本研究提出了一种用于通风预热/预冷的 PCM 增强通风窗 (PCMVW) 系统,以节省建筑能源。它被设计成使用不同控制策略的夏季夜间制冷应用和冬季太阳能存储应用。建立了 PCMVW 的 EnergyPlus 模型来研究控制策略。接下来,进行了全尺寸实验来研究 PCMVW 的工作原理并验证该模型。利用经过验证的模型,将 PCMVW 的热性能和能量性能与其他 2 个通风系统进行了比较,结果表明 PCMVW 可以大大降低夏季和冬季应用的制冷/供暖能源需求。最后,本文提出了丹麦气候条件下住宅应用的控制策略。针对夏季夜间制冷应用开发的控制策略是使用玻璃间反射遮阳,直接从 PCM 热交换器向房间通风,同时应用 VW 自冷进行通风预冷模式,并使用 VW 中的空气加热房间以防止房间过冷。针对冬季太阳能储能应用开发的控制策略是使用玻璃间吸收百叶窗,利用 VW 中的热空气,并通过自冷和旁路通风冷却 VW,以防止房间过热。与原始的夏季和冬季控制策略相比,采用开发的控制策略,建筑节能分别高达 62.3% 和 9.4%。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
2.0 基本程序 2.1 处理电子组件 R, F, W, C 高 IC 2.2 清洁 R, F, W, C 高 IC 2.3.1 涂层去除,涂层识别 R, F, W, C 高 AC 2.3.2 涂层去除,溶剂法 R, F, W, C 高 AD 2.3.3 涂层去除,剥离法 R, F, W, C 高 AD 2.3.4 涂层去除,热法 R, F, W, C 高 AD 2.3.5 涂层去除,研磨/刮削法 R, F, W, C 高 AD 2.3.6 涂层去除,微喷砂法 R, F, W, C 高 AD 2.4.1 涂层更换,阻焊层 R, F, W, C 高 ID 2.4.2 涂层更换,保形涂层/密封剂 R, F, W, C 高 ID 2.5 烘烤和预热 R, F, W, C 高 ID 2.6.1 图例/标记,冲压方法 R, F, W, C 高 ID 2.6.2 图例/标记,手写方法 R, F, W, C 高 IC 2.6.3 图例/标记,模板方法 R, F, W, C 高 IC 2.7 环氧树脂混合和处理 R, F, W, C 高 IC
15. 将 Matrigel 包被的培养板和 hiPSC 培养基预热至 20-25 C。16. 从预包被的培养板中吸出 Matrigel 并加入 hiPSC 培养基(6 孔板每孔 2 ml)。17. 将 9 ml hiPSC 培养基加入到 15 ml 离心管中。18. 将低温小瓶直接转移到 37 C 水浴中并观察解冻过程。当管中大部分内容物解冻并仅剩下一小块冰时,迅速取出并用 70% 乙醇彻底清洗。19. 小心地将细胞逐滴转移到准备好的带有培养基的 15 ml 离心管中。以 200 3 g 的速度离心 5 分钟。20. 小心吸出上清液。将沉淀物悬浮在 hiPSC 培养基(例如 1 ml)中,并接种到准备好的 Matrigel 包被的培养板上。前 24 小时加入 1 ml/ml 2 mM Thiazovivin(最终浓度 2 m M)。21. 如果 24 小时后细胞附着良好,则用 hiPSC 培养基更换培养基。如果附着力较低,再加入 1 ml/ml 2 mM Thiazovivin(最终浓度 2 m M),培养 24 小时。从第二天开始,每天更换培养基,每孔(6 孔)加入 2 ml hiPSC 培养基。继续“hiPSC 传代和维护”,步骤 1-8。
2023 年 2 月 16 日 CESAM-RD-N 公告编号 SAM-2023-00100-AMR 联合公告 美国陆军工程兵团 密西西比州环境质量部 污染控制办公室 提议将填料排放到 21.07 英亩湿地和 5,611 线性英尺的溪流中,与在密西西比州朗兹县哥伦布建造铝厂有关 敬启者: 本区已根据《清洁水法》第 404 条收到陆军部 (DA) 许可申请。请将此信息传达给相关方。申请人:Steel Dynamics, Inc. 收件人:Glen A. Pushis 先生 7575 West Jefferson Boulevard Fort Wayne, Indiana 46804 代理人:Headwaters, Inc. 收件人:Cullen D. Dendy 先生 PO Box 3658 Tupelo, Mississippi, 38803 地点:该项目位于密西西比州朗兹县哥伦布市金三角地区机场以西、Artesia 路以北的湿地和 Gilmer Creek 未命名支流中,纬度 33.436445,经度 -88.607878。工作描述:申请人提议填埋 21.07 英亩湿地、2,895 英尺(ft)常年溪流、2,025 英尺间歇溪流、418 英尺短时溪流和 273 英尺沟渠,以建造铝扁轧厂及其附属设施。该工厂将包括成品/装运大楼、冷轧厂、工艺大楼、仓库、热轧厂、铸造厂、露天储存区、蓄水池、堆放和储存区、预热区、卡车秤和停车区。目的:该项目的目的是为汽车和饮料包装行业提供再生铝产品。
2.0 基本程序 2.1 处理电子组件 R, F, W, C 高 I C 2.2 清洁 R, F, W, C 高 I C 2.3.1 涂层去除,涂层识别 R, F, W, C 高 A C 2.3.2 涂层去除,溶剂法 R, F, W, C 高 A D 2.3.3 涂层去除,剥离法 R, F, W, C 高 A D 2.3.4 涂层去除,热法 R, F, W, C 高 A D 2.3.5 涂层去除,研磨/刮削法 R, F, W, C 高 A D 2.3.6 涂层去除,微喷砂法 R, F, W, C 高 A D 2.4.1 涂层更换,阻焊层 R, F, W, C 高 I D 2.4.2 涂层更换,保形涂层/密封剂 R, F, W, C 高 I D 2.5 烘烤和预热 R, F, W, C 高 I D 2.6.1 图例/标记,冲压方法 R, F, W, C 高 I D 2.6.2 图例/标记,手写方法 R, F, W, C 高 I C 2.6.3 图例/标记,模板方法 R, F, W, C 高 I C 2.7 环氧树脂混合和处理 R, F, W, C 高 I C
为了获得均匀的混合物,必须将树脂和硬化剂预热至约 50 至 60°C。必须使用平铲和干净的一次性容器将两种成分混合,直到获得均匀一致颜色的均匀物质,无空气、块状或条纹,避免混入空气。它还可以在低转速下进行机械混合,以防止过多的空气夹带。在一些对电气要求较高的应用中,必须在真空室中对组件进行混合和脱气。真空下的混合时间取决于质量,为0.5至3.5小时。在自动配料和混合装置中,两种组分都必须在储罐中以 2 mbar 的压力脱气至少 45 分钟。一旦组件脱气完毕,就必须将其移除以防止负载沉淀。使用静态混合器喷嘴进行配料和混合后,可以将其转移到 10 – 15 mbar 的真空罐中,或者直接转移到 APG 工艺中的热模具中。在低于25°C的温度下,混合料的有效适用期为24至48小时。传统的混合容器应至少每周清洗一次或在工艺结束时清洗。对于较长的生产期,建议将储罐和传导管冷却至 18°C 的温度,以防止化合物过早硬化。对于压力凝胶工艺 (APG),可通过向总树脂中添加至少 0.2% 的 DY 062 促进剂来调整反应性。应注意,添加促进剂会缩短混合物的使用寿命。 。
摘要:热能储能系统的整合可以改善发电厂和工业过程中众多应用的效率和灵活性。通过将这些技术转移到运输部门,现有电位可用于热管理概念,并可以开发新的热量。为此,作为DLR Next Generation Car(NGC)项目的一部分,针对电池电动车辆的固体媒体高温热储能系统的技术开发正在进行。此类概念的想法是在定义的温度水平上通过旁路概念将其储存并通过旁路概念排放。使用此类溶液时的决定性标准是高度的全身存储密度,可以通过在高温水平上存储热量来实现。但是,需要在储存高温热时,需要用于热绝缘的尺寸,从而导致可实现的全身存储密度的限制。为了克服这种局限性,提出了替代的热绝缘概念。到目前为止,常规的热绝缘措施是基于有效的热绝缘材料的储藏膜,因此,厚度是由于安全限制而导致的,该安全性限制了允许的最大表面温度。相比之下,替代概念可以通过将外部搭桥整合到充电期内的系统绝缘材料中的全身优势来实现。在放电期间,可以将预热材料内未使用的热量或热量损失整合到旁路路径中,并且可以通过主动冷却在装载过程中降低绝缘厚度。使用详细的模型进行参考和替代热绝缘概念,对相关侵蚀变量和根据定义的规格进行了系统模拟研究。结果证明,与先前的解决方案相比,替代热绝缘概念可以取得显着改善,并具有明显的改善,并且可以克服现有局限性。
在过去的几十年里,研究人员对研究用铝土矿颗粒等矿物制备复合材料的天然优势表现出了极大的兴趣,并证明了它们作为高性能复合材料制造中成本效益高的增强剂的有效性。这项研究是使用不同比例(2、4 和 6 wt%)的伊拉克天然铝土矿粉末通过搅拌铸造和 Mg 添加剂制备铝金属基复合材料 (AMMC) 的一次新尝试。在实验工作中,将铝土矿石粉碎并研磨,然后在 1400 ○ C 下烧制粉末。使用粒度、XRD 和 XRF 分析对粉末进行表征。对 AMMC 铸件进行机械加工、抛光、预热,并使用硬度测量、微观结构观察和杨氏模量、泊松比和断裂韧性计算来表征其性能。此外,还通过从引伸计记录中测量裂纹口张开位移 (CMOD) 来评估其断裂韧性。结果表明,通过搅拌铸造添加 2 和 4 wt% 的镁和伊拉克烧铝土矿,可以成功生产出具有改进的断裂韧性、硬度和弹性模量性能的 AMMC。此外,CMOD 测量结果显示,添加 2 和 4 wt% 的铝土矿颗粒可使基质材料的“最大失效载荷”和“临界载荷下的临界 CMOD”分别增加至约“25 和 44%”和“32 和 47%”。此外,在这些比例下,通过 K IC 和杨氏模量计算的基质材料的断裂韧性分别显示出约“22 和 69%”和“8 和 12%”的改善。由于 AMMC 在这种比例下具有脆性,添加 6% 的铝土矿虽然可以记录硬度(57%)和弹性模量(22%)的最高改善,但无法使断裂韧性达到所需的改善。
食谱:烘焙苹果 (9 人份) 配料: • 饼皮: o 3/4 杯通用面粉 o 1/2 杯全麦面粉 o 2 汤匙糖粉 o 2 汤匙软化黄油或人造黄油 o 4 汤匙菜籽油 • 馅料: o 2 个大 Gala 或 Fuji 苹果,削皮、去核并切成大小合适的块 o 2 个大 Granny Smith 苹果,削皮、去核并切成大小合适的块 o 1-1/2 杯苹果酒,分开 o 2 汤匙玉米淀粉 o 1/2 茶匙肉桂 o 1/8 茶匙肉豆蔻 o 2 汤匙红糖 o 少许盐 o 1/4 杯苹果酱(不加糖) o 1/2 杯低脂格兰诺拉麦片 制作方法: 1. 将烤箱预热至 375°F。在中号碗中,混合干燥的饼皮成分。加入人造黄油和菜籽油,直至混合物完全混合。将饼皮混合物压入 8x8 或 9x9 英寸方形烤盘底部。烘烤 15 分钟。从烤箱中取出并放在一边冷却。2. 将烤箱温度降低至 325°F。准备馅料:在中火上将平底锅放入 1 杯苹果酒中煮苹果 5 分钟或直到变软。将玉米淀粉和剩下的 1/2 杯苹果酒在小碗中混合。加入正在煮的苹果中,不断搅拌,直至混合物变稠且玉米淀粉完全煮熟。加入肉桂、肉豆蔻、糖和盐。放在一边。3. 用勺子背面或抹刀将苹果酱涂抹在准备好的饼皮上。上面放上煮熟的苹果混合物。撒上格兰诺拉麦片。烘烤 20-30 分钟或直到热气腾腾
摘要:对直径25 μ m的Ag-2.35Au-0.7Pd-0.2Pt-0.1Cu合金丝在不同工艺参数下进行了键合性能试验。利用扫描电子显微镜(SEM)研究了电击发(EFO)电流和EFO时间对无空气球(FAB)变形能力的影响,以及超声功率和键合力对键合特性的影响。实验结果表明:随着EFO电流和EFO时间的增加,FAB从预热尖端生长为小球、规则球,最后生长为高尔夫球,在25 mA和650 μ s时FAB呈现最佳形状。当EFO电流为25 mA时,FAB直径与EFO时间呈非线性关系,可用三次方程表示。进一步研究发现,在键合力一定的情况下,随着超声功率的增加,捣碎的球直径越来越大,毛细孔印迹越来越明显,尾部宽度也随之增大,反之亦然。球键合的最佳超声功率为70 mW,键合力为45 gf;楔键合的最佳超声功率为90 mW,键合力为75 gf。最后,在最佳工艺参数下制备的键合线样品,在破坏性拉力测试后均未发生球键合和楔键合剥离现象,在球剪切测试后键合焊盘上金属间化合物完全覆盖,形貌完好,键合线样品具有较高的键合强度,从而提高了微电子产品的可靠性。该研究为含Pt银基键合合金线的可靠性研究提供了技术支持。