高保真量子信息处理需要快速门和长寿命量子存储器的结合。在这项工作中,我们提出了一种混合架构,其中奇偶校验保护的超导量子比特直接耦合到马约拉纳量子比特,后者充当量子存储器的角色。超导量子比特基于 π 周期性约瑟夫森结,该结由栅极可调的半导体导线实现,其中单个库珀对的隧穿受到抑制。其中一根导线还包含四个定义量子比特的马约拉纳零模式。我们证明这可以实现 SWAP 门,从而允许在拓扑和常规量子比特之间传递量子信息。该架构将可以用超导量子比特实现的快速门与拓扑保护的马约拉纳存储器相结合。
摘要 [动机] 人工智能(AI)为公共机构创造了许多机会,但在公共服务中不道德地使用AI会降低公民的信任。 [问题] 本研究的目的是确定公民对公共部门可信赖的AI服务有什么样的要求。 该研究包括21次访谈和四项公共AI服务的设计研讨会。 [结果] 主要发现是所有参与者都希望公共AI服务是透明的。 这种透明度要求涵盖了可信赖的AI服务必须回答的许多问题,例如其目的。 参与者还询问了AI服务中使用的数据以及数据的收集来源。 他们指出,AI必须提供易于理解的解释。 我们还区分了另外两个重要要求:控制个人数据的使用和让人类参与AI服务。 [贡献] 对于从业者,本文提供了可信赖的公共AI服务应该回答的问题清单。 对于研究界,它从公民的角度阐明了AI系统的透明度要求。
其中,我们记为 σ µ = ( I, − σ i ) 和 ˆ σ µ = ( I, σ i )。σ i 是通常的泡利矩阵。在以下的讨论中,我们将处处使用外尔基。现在我们考虑能量为 E(可以为正数或负数)的狄拉克方程的稳态解,它们不过是 Ψ( x ) = e − i Et Φ E ( x )。这里,Φ E ( x ) 满足狄拉克方程 ( 1 ),只是 i∂ 0 处处被 E 取代。稳态提供了一个完整的基础,任何一般解 Ψ( x ) 都可以根据它展开。此外,它们帮助我们看到狄拉克方程的一个重要的内部对称性,称为电荷共轭对称性。如果 Φ(x) 是与能量 E 相关的状态,我们可以找到相应的电荷共轭态,定义为
拓扑量子计算 (TQC) 是一种量子计算方法,旨在通过利用由非阿贝尔任意子组成的非局部自由度的拓扑属性来最小化硬件层面的退相干 [1-3]。后者是奇异的准粒子激发,具有非平凡的交换统计数据,用辫子群的多维表示来描述。非阿贝尔任意子集合嵌入在退化基态流形中,这允许非局部存储量子信息并通过编织实现幺正变换来处理它。在所有非阿贝尔任意子中,马约拉纳零能量模式 (MZM) 是最有希望用于 TQC 开发的模式 [4-8],因为它们是凝聚态系统中最可行的模式。过去十年,开创性的实验确实在多个不同平台上为它们的存在提供了强有力的证据,如近邻半导体纳米线[9-12]、磁性吸附原子链[13,14]、拓扑超导体内的涡旋[15,16]、平面约瑟夫森结[17,18]和近邻量子自旋霍尔边缘[19,20]。基于马约拉纳量子计算机的构建块是马约拉纳量子比特,由四个马约拉纳零点模型组成。通过物理编织这些马约拉纳零点模型,可以实现所有单量子比特 Clifford 门 [21-23]。这些门受到拓扑保护,因为它们的结果完全取决于 2+1 维空间中任意子绝热遵循的轨迹的拓扑。重要的是,一对 MZM 的编织可以通过多种方式实现,这些方式都等同于两个非阿贝尔任意子的物理交换 [ 24 – 30 ] 。事实上,通过考虑额外的 (混合的) 辅助马约拉纳粒子的存在,我们可以通过适当调整不同 MZM 之间的成对耦合 [ 31 , 32 ] 或通过执行顺序射影宇称测量 [ 8 , 33 – 38 ] 来进行编织。非 Clifford 操作(如 T 门)无法通过马约拉纳编织实现,并且必然依赖于没有拓扑保护的实现,并且需要额外的纠错方案(如魔法态蒸馏)[ 23 , 39 ] 。为了实现通用量子计算,单量子比特门必须补充纠缠门,如 CNOT 门。遗憾的是,这种两量子比特 Clifford 门无法在可扩展架构中仅通过马约拉纳编织操作实现 [22, 40]。基于测量的方法使我们能够克服这个问题,通过对(联合)马约拉纳奇偶性进行高保真投影测量来实现 CNOT 门 [8, 35, 41 – 44]。然而,尽管基于测量的 TQC 已被证明对未来开发完全可扩展的拓扑量子计算机非常有价值,但所需的测量协议仍然是一项艰巨的挑战 [35,45,46]。因此,目前,最好设计和描述替代方案,这些方案不依赖于高保真测量,但仍允许稳健地纠缠不同的拓扑量子位。在这项工作中,我们提出了一种基于完整方法的 CNOT 门的无测量实现。完整量子计算的关键思想是利用非阿贝尔几何相在底层哈密顿量的退化特征空间上实现幺正运算 [47]。当系统参数沿着参数空间中保持退化的闭环进行调整时,就会出现这些规范不变相。这种方法相当通用,已经在非拓扑量子计算方案中成功运用 [47-49]。因此,在 TQC 中使用完整技术也很有意义。事实上,马约拉纳粒子的编织过程本身可以解释为一个完整的过程,其中系统遵循成对马约拉纳粒子耦合的三维参数空间中特定的、拓扑保护的环路 [8, 31]。完整的编织描述的优点是它可以很容易地推广,既可以通过考虑具有不同拓扑结构的环路来实现,也可以通过考虑具有不同拓扑结构的环路来实现。
一维拓扑超导体的边界可能导致马约拉纳零模式的出现,其非平凡交换统计数据可用于量子计算。在分支纳米线网络中,可以通过时间相关地调整拓扑非平凡参数区域来交换马约拉纳模式。在这项工作中,我们模拟了由 p 波超导 Rashba 线制成的 T 形结中四种马约拉纳模式的交换。我们推导出(准)绝热编织时间的具体实验预测,并确定了成功的马约拉纳交换过程的几何条件。此外,我们证明在绝热极限下,门控时间需要小于超导序参数平方的倒数,并与门控电位成线性比例。此外,我们展示了如何避免在分支纳米线系统中在窄结的线交叉点处形成额外的马约拉纳模式。最后,我们提出了一种多量子比特设置,以实现通用量子计算。
实现量子计算的主要障碍 [1] 是处理量子误差。从环境中分离出一点量子信息已经够具挑战性的了;然而,为了实现一台有用的量子计算机,必须维持数千个纠缠量子比特的相干性。拓扑量子比特的用途在于它们内置了容错能力,这是由于任意子和边界模式之间的空间分离 [2]。马约拉纳零模式 [3-5] 是 p 波超导纳米线的端模式,是拓扑量子计算中最有前途的方向之一 [4,6-14]。这些马约拉纳端模式可以非局部地存储信息,并且可以编织起来执行受拓扑保护的逻辑门 [15-22]。尽管拓扑量子比特具有一定程度的防错能力,但它们仍然需要纠错才能完全实现为计算量子比特。完美的马约拉纳量子比特将具有无限长,并保持在零温度下。非零温度会导致有限的准粒子密度,从而导致量子比特出现错误。存在诸如环面码 [ 2 ]、表面码 [ 23 – 26 ] 和颜色码 [ 27 – 29 ] 之类的纠错码,它们可以在马约拉纳量子比特上实现 [ 30 – 37 ] 或平面码 [ 38 , 39 ] 等其他方案。然而,这些纠错方案需要大量开销,需要大量冗余量子比特来捕获和纠正错误。正如 Kitaev 指出的那样 [ 2 ],物质的任何拓扑相都可以识别为纠错码。在这一脉络中,我们要问,由马约拉纳纳米线链构建的一维 (1D) 费米子拓扑相 [40, 41] 是否可以与“费米子宇称保护的纠错码”联系起来。只要费米子宇称守恒,这样的链就可以防止量子误差,而且只需要一行物理量子比特,而不是一个表面。在本文中,我们展示了如何使用马约拉纳纳米线链来显著提高量子比特的寿命,因为马约拉纳量子比特中存在不同错误类型的层次结构。由于观察到的密度出乎意料的高
我们提出了一个量子自测试协议来认证涉及马约拉纳费米子模式的费米子宇称测量。我们表明,观察到一组理想测量统计数据意味着实施的马约拉纳费米子宇称算子的反交换性,这是马约拉纳检测的必要先决条件。我们的协议对实验误差具有鲁棒性。我们获得了与误差呈线性关系的状态和测量算子的保真度下限。我们建议根据语境见证 W 来分析实验结果,对于任何经典数据概率模型,它都满足 ⟨ W ⟩≤ 3。不等式的违反证明了量子语境性,与最大理想值 ⟨ W ⟩ = 5 的接近程度表示对马约拉纳费米子检测的置信度。
与热浴耦合会导致存储的量子信息退相干。对于高斯费米子系统(线性或高斯光学的费米子模拟),这些动力学可以通过系统协方差矩阵的演化优雅而高效地描述。将系统和浴都视为高斯费米子,我们观察到退相干发生的速率与浴温度无关。此外,我们还考虑了动力学为马尔可夫的弱耦合状态。我们完全以协方差矩阵的语言对马尔可夫主方程进行了微观推导,其中温度独立性仍然明显。这与其他场景中看到的行为截然不同,例如当费米子与玻色子浴相互作用时。我们的分析适用于许多马约拉纳费米子系统,这些系统被誉为非常稳健、拓扑受保护的量子比特。在这些系统中,有人声称通过降低温度可以指数地抑制热退相干,但我们发现高斯退相干无法通过冷却消除。