汽车对设备在高应力和恶劣工作条件下运行的要求越来越严格。在这种情况下,钝化层在确定电气性能和可靠性方面起着根本性的作用。本研究重点关注应用于最先进功率器件的一次和二次钝化层及其对可靠性的影响。使用标准模块封装中组装的功率二极管作为测试载体,并进行高压温度湿度偏置测试以对结构施加应力。完整的故障模式分析突出了钝化层退化背后的现象。通过应用特定的无机和有机层组合来评估不同的钝化方案。最后,总结了典型的退化机制和相互作用。
每种载荷条件的响应时间历史。在时间域中,使用雨流循环计数技术(Matsuishi 和 Endo 1968)直接计算应力的时间历史。然后使用 Palmgren-Miner(Palmgren 1924,Miner 1945)损伤累积定律对每个循环的损伤进行线性求和。时间域方法适用于任何类型的信号,无论是随机信号还是确定性信号。然而,这种方法对于随机载荷而言计算量很大,因为需要较长的应力时间历史才能以统计准确的方式生成应力范围直方图的尾部。极端情况实现不佳可能会对疲劳寿命估计产生不利影响,因为最具破坏性的事件可归因于尾部的高应力范围。因此,损伤估计的收敛性会随着
第 1 章(传感器和数据采集)首先介绍了充分了解服务载荷/应力以及如何测量这些载荷/应力的重要性。服务载荷对疲劳分析的结果有显著影响,因此需要准确测量实际服务载荷。本章的大部分内容集中于应变计作为准确测量应变/应力的传感器,这是疲劳寿命分析的最重要预测指标。还介绍了各种识别高应力区域的方法,从而介绍了应变计在测试部分中的放置位置。包括温度测量、单位时间内的温度循环次数和温升率。包括以下内容是为了引起人们的注意,疲劳寿命预测既基于使用寿命期间给定应力水平下的循环次数,也基于服务环境。还介绍了基本的数据采集和分析技术。
陶瓷具有较高的强度和模量、优异的耐磨性和耐化学性,特别是优异的耐热性1,2),主要应用于在高温下严重摩擦或高应力负荷等极端环境下使用的部件,可应用于燃气轮机、发动机、电池、热交换器等需要高工作温度的航空航天、汽车、能源领域的结构和部件3,4),将陶瓷应用于这些应用可通过提高工作温度和减少系统损耗来提高效率5)。烧结是一种传统的陶瓷制造方法,其按以下顺序进行:1)粉末制备(造粒),2)压缩成型,3)坯体加工,4)烧结,5)后退火和精加工等(图1)。粉末制备是指通过添加添加剂来造粒以促进致密化的过程。
1971 年之前,西科斯基飞机公司分析直升机结构的主要方法是通常的材料强度法。进行了半经验校正以解释复杂的切口或应力集中区域。对于一些冗余结构区域,在有限的程度上采用了弹性能量法,但主要用作高应力部件的应力检查。在 20 世纪 60 年代,机身广泛使用应变计(使用了大约一千个应变计)来将应力分析与测试结果关联起来。这项相关性研究表明,如果使用更准确的分析方法来预测内部载荷路径,可以实现显著的重量减轻。因此,使用力法重新分析机身型结构,并获得了明显改善的相关性。但主要的问题是无法利用这种改进的方法及时进行结构设计。
1971 年之前,西科斯基飞机公司分析直升机结构的主要方法是通常的材料强度方法。进行了半经验校正以解释复杂的切口或应力集中区域。对于一些冗余结构区域,在有限的程度上采用了弹性能量法,但主要用作高应力部件的应力检查。在 20 世纪 60 年代,机身广泛使用应变计(使用了大约一千个应变计)来将应力分析与测试结果关联起来。这项相关性研究表明,如果使用更准确的分析方法来预测内部载荷路径,可以实现显著的重量减轻。因此,使用力法重新分析机身类型结构,并获得了明显改善的相关性。但主要的问题是无法利用这种改进的方法及时进行结构设计。
在 CarlisleIT,还使用 VNA 和/或 PNA 测试电缆组件在弯曲和屈曲过程中的相位、损耗和阻抗变化。使用几种尺寸的心轴缠绕柔性组件并重新测试相位变化。使用双心轴屈曲夹具上的 1 英寸心轴进行高应力屈曲循环测试。调整张紧器以获得 1 磅的等效拉力,或在电缆的一端连接 1 磅重的重物,然后将待测电缆安装在测试夹具上。电缆在心轴周围屈曲 500 次 +/- 90 度。然后将电缆从夹具中取出并测量插入损耗、VSWR 和相位。结果发现在规定的限度内。以 500 为增量重复上述过程,直至 2,000 次循环,然后以 1,000 为增量重复,直至总共 10,000 次循环,前提是 AUT 的电气性能没有明显下降(500、1000、1500、2000、3000、4000、5000、10000)。