摘要Hexapods对各种运动任务的适应性,尤其是在救援和勘探任务中,可以推动其应用。与受控环境不同,这些机器人需要驾驶不断变化的地形,在这种环境中,地面不规则影响会影响立足点位置和接触力的起源转移。这种动态相互作用导致六角形姿势变化,影响整体系统稳定性。这项研究介绍了一种姿势控制方法,该方法根据地形拓扑调整了六角形的主体定向和高度。策略使用肢体位置估算地面斜率,从而计算新的肢体轨迹以修改六脚架的角度位置。根据计算出的斜率调整六足的高度,进一步增强了主体稳定性。在雅典娜六角(Athena Hexapod)(环境适应性的全地形六角形)上实施和评估了所提出的方法。通过使用凉亭软件中的计算模拟,通过对六足动物在不规则表面上的多体模型的动态分析来评估控制可行性。环境复杂性对六足动物稳定性的影响都在坡道和不平坦的地形上进行了测试。对每种情况的独立分析都评估了控制器对滚动和俯仰角速度的影响以及高度变化。结果证明了该策略对这两种环境的适用性,从而显着增强了姿势稳定性。
计算能力和人工智能 (AI) 算法的快速改进使我们能够自动做出影响我们日常生活和推动工作场所转型的重要决策。据预测,许多人将发现自己没有准备好应对某些行业日益由人工智能带来的高度变化和不确定性。一个关键的教育挑战是弄清楚如何支持年轻一代发展他们适应和创新人工智能世界所需的能力。本文认为,教育者和学习者不仅应该参与学习,还应该参与人工智能世界的共同设计学习。此外,他们应该共同探索可以帮助人们塑造未来人工智能场景的知识、目标和行动,并学会应对高度不确定性。本文的主要贡献是对人工智能世界中的学习设计的重新概念化,探索教育设计的问题空间,并说明教育工作者和学习者如何共同努力重新构想人工智能世界中的教育未来。作为这个问题空间的一部分,本文讨论了基础哲学(能力方法和价值创造)、高级教学法(强调共同创造)、教学策略(推测性教学法)和教学策略(人工智能场景)。然后,它提出了一个设计框架(ACAD)来支持教育工作者和学习者关于人工智能世界中学习设计的讨论。这种参与式设计方法旨在让人们意识到教育意味着什么、对谁来说意味着什么以及使用人工智能学习会是什么样子,它强调教育工作者和学习者积极参与共同设计他们想要的未来,帮助塑造人工智能世界中的学习和生活。
摘要。与表面质量平衡相关的南极冰盖(AIS)的高度变化在时空和时间上的过程差异很大。它们的次要自然变异能力很大,并阻碍了长期趋势的检测。FIRN模型或卫星高度测定观测值通常用于研究此类厚度的变化。但是,在文件模型之间存在很大的传播。此外,他们不能完全解释观察到的厚度变化,尤其是在较小的空间尺度上。和解的厚度变化将促进卫星高度测定的长期趋势的检测;解决此类趋势的空间模式的解决方案;因此,它们归因于基本机制。这项研究有两个目标。首先,我们以10 km的网格量表进行了年度的南极厚度变化。第二,我们表征了Altime-try产品和FIRN模型中的错误。为了实现这一目标,我们共同肛门卫星高度测定和固定建模会导致时间和空间。我们使用这些变量的固定厚度变化和卫星观察幅度的变化,以生成1992 - 2017年AIS的合并产品(“调整后的固定厚度变化”)。组合产品比单独使用的文件模型或单独的高度测定法更好地表征了空间分辨的变化。与仅使用模型的溶液相比,与仅高度计的溶液相比,它提供了更高的分辨率和更精确的变化空间分布。调整后厚度变化的盆地均值时间序列中的相对不确定性范围为20%至108%。在网格细胞水平上,相对不确定性较高,每个盆地的中位数为54%至186%。
第1201节。山坡 *1, *2, *4条第1201.1条。目的:山坡发展标准的主要目的是允许合理使用和发展山坡地区,同时促进Maricopa县公民的公共卫生,安全,便利和一般福利,并保持山坡地区的性格,身份和形象。山坡发展标准的主要目标是鼓励保护自然地形特征并最大程度地减少山坡建筑的疤痕。第1201.2条。一般规定:1201.2.1。在任何水平距离内的自然坡度为15%或更高的所有部分,地段或包裹,其高度变化应遵守本节中规定的规定。对部门确定的任何挑战,即遵守本节规定的大部分,区域或包裹的任何部分,应作为挑战的一部分,是对亚利桑那州注册的土木工程师的书面确定,并由密封的地形计划支持。*3, *5 1201.2.2。在本节中遵守法规的改进工作的评分许可,建筑许可或其他批准的批准,不得以更改,修改或不利用现有不动产的现有评分,构造或其他改进为符合本节中的法规的现有级别,构建或其他有效的规定的规定的规定。第1201.3条。第1201.4条。使用条例:适用于山坡发展标准适用的任何分区区域的财产的使用条例应保持与主要分区区规定的相同,除非此处另有规定。高度法规:所有建筑物和结构的高度(包括挡土墙)在具有15%或更高自然坡度的部分物业上不得超过原始自然等级30英尺,直到任何建筑物横截面,在原始自然等级的横截面上的任何点均应测量。根据本条例的第1301条,根据本条例的第1002、1003或1004条的规定,该条例第1301条的规定,不应解释为防止标准释放标准,或根据本条例第303条的差异。
在复杂环境中定位声源的能力对于通信和导航至关重要。空间听证会主要依赖于两只耳朵之间声音到达时间的差异的比较,即播出时间差异(ITD)。听力障碍对声音本地化非常有害。尽管人工耳蜗(CIS)成功地恢复了许多关键的听力能力,但通过ITD检测与双边顺式合理的定位仍然很差。根本原因尚不清楚。神经元,ITD敏感性是通过专门的脑干神经元进行的两只耳朵的兴奋性和抑制输入之间的巧合检测而产生的。由于在CI刺激过程中缺乏电生理学脑干记录,目前尚不清楚在多大程度上是由双耳比较神经元引起的,或者已经在输入水平上引起。在这里,我们使用自下而上的方法比较CI听力动物模型中电气和声学刺激之间的响应特征。在Gerbils中进行细胞外单神经元记录,我们发现在电脉冲刺激期间,兴奋性和抑制性脑干输入对双耳比较神经元的兴奋性和抑制性脑干输入中等高度渗透性。这一发现确定,双耳处理阶段必须应对CI刺激期间的输入统计量的高度变化。为了估计这些影响对ITD灵敏度的后果,我们使用了听觉脑干的计算模型。调整模型参数以使其响应特性与我们在任何一种刺激类型期间的生理数据相匹配时,该模型预测,即使对于超专有输入,也可以保持对电脉冲的敏感性。然而,与声学相比,该模型在电刺激过程中表现出严重改变的空间敏感性:
防止疫苗冷冻是疫苗管理中最大的挑战之一。直到2018年,免疫计划中使用的疫苗载体缺乏防止疫苗冷冻的特征。冻结预防疫苗载体(FPVC)具有工程衬里,可将疫苗直接暴露于冷冻冰袋中缓冲。在尼泊尔东部的24个卫生职位上进行了三个FPVC的领域评估。目的是评估FPVC的性能,可接受性,系统拟合和成本,以告知前期和简介计划。这项研究分为两个阶段:在第一阶段,将含有虚拟疫苗的FPVC(标记为“非用于人类使用”标记)被运送到外展会议上,以及Standard疫苗携带者(SVC)(SVC);在第二阶段;在第二阶段,FPVC用于运输疫苗,用于运输疫苗。这项研究收集了来自FPVC内外的卫生工作者,日志和电子温度监测器的定量和质量数据。的结果表明,FPVC成功地防止了99%以上时间以下的温度,除了在一个地点,环境温度低于世界卫生组织指定的最低评级测试温度。FPVC的内部冷水时间是高度可变的,平均动力学温度也可能是由于环境温度范围广泛和冰箱性能的高度变化所驱动的。2022作者。由Elsevier Ltd.几乎所有卫生工作者都要求较小,重量轻的FPVC,但赞赏FPVCS防止疫苗冻结的能力,同时避免过热的热量暴露。FPVC的利益成本比大于1,因此物有所值。的结果指出,了解预期使用环境以及对Smaller,Shortgrange和Long距离载体的需求的重要性。这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
摘要引言本评论的目的是系统地确定生长激素(GH)疗法对特发性短身材(ISS)儿童和青少年成人身高的影响。进行了系统的审查,以评估GH疗法在ISS儿童中的有效性。诸如Proquest Central,Journal @ Ovoid,EbsCohost Medline的数据库,牛津大学出版社期刊,KBþJiscCollections Elsevier Science Direct Freedo和BMJ以及书目的交叉引用。检索了1989年至2023年1月的随机试验。最终成人高度测量并符合纳入标准的随机试验(高度> 2标准偏差[SD]得分低于平均值,没有合并症的条件会损害生长,峰值生长激素反应>10μg/L,没有GH治疗的前历史记录)。排除标准是非随机试验;试验包括除ISS以外的其他原因,研究包括除GH和促性腺激素释放激素类似物(GNRH-A)以外的其他干预措施。使用牛津的关键评估计划的结构化方法用于分析和提取数据。结果该研究回顾了14项合格的随机试验,该试验招募了2,206个可评估的儿童进行分析。七项试验比较了不同的GH剂量,四项试验比较了GH治疗与对照组,并将三项试验比较了GH和GNRH治疗与单独GH的组合。除了一项研究之外,总体辍学率不高。男孩的高百分比是试验之间的异质性的潜在来源。高度变化(HT)-SD得分分别为1.06 0.30和0.18 0.27,分别使用治疗和对照儿童,并且差异在统计学上是显着的(P <0.001)。总体平均身高增长率为5 cm(0.84 SD得分)。在GHÞGNRH-A治疗的第二年和第三年中发现高度速度显着降低(p <0.001),从治疗的7 cm/年从治疗的第一年开始为5.4 cm,并在第二年和
地球系统模型被广泛用于估计湿地范围的未来变化,但不会将表面高度变化(SEC)纳入预测湿地对海平面上升的真实反应(SLR)。使用机器学习模型(MLM)来研究多个驱动因素对潮汐沼泽中SEC和沉积物积聚率(SAR)和地球系统模型的影响(即综合气候和湿地迁移模型)的开发是为了预测潮汐沼泽对SLR的反应。地球系统模型结合了MLM发现的影响SEC的因素。首先,合成了有关潮汐沼泽的SAR和SEC的全球数据,并使用MLM检查SEC和SAR的驱动因素,包括潮汐范围和频率,沉积物载荷,降水量,高度,纬度,海冰和/或相对SLR(RSLR)。人类干扰导致沉积物的积聚减少,现有的保护活动在促进沉积物积聚方面不可能。其次,开发了一个综合的气候和湿地迁移模型,以评估通过将SEC,RSLR,气候区域,潮汐淹没,海拔和纬度纳入MATLAB中未来SLR的全球潮汐沼泽的弹性。该模型是在代表性浓度途径(RCP)2.6、4.5和8.5以及基于自然的人类适应方案下实施的。在RCP和基于自然的人类适应情景下,潮汐沼泽将在当前全球面积的53%-58%的占2100时,如果有能力的沉积物负载和住宿空间允许陆路迁移。如果维持当前的住宿空间,则可能可能存在23% - 30%的全球净损失。未来沼泽损失的热点主要在北美,澳大利亚和中国。对大多数SLR场景的预测可见沼泽地区在21世纪中期而不是中期的峰值。生态形态反馈会影响沉积物积累的效果,但不能纳入地球系统模型中。在增强潮汐沼泽对未来SLR的弹性方面强调了基于自然的适应性的重要性。
摘要 本研究研究了铜突起对连接电阻的影响,作为中通孔硅通孔 (TSV) 晶片混合键合的详细数据。在制备了多个具有不同铜突起量的 Cu TSV 晶片和 Cu 电极晶片并通过表面活化键合方法使用超薄 Si 膜进行键合后,通过四端测量评估了键合晶片的连接电阻(即 TSV、Cu 电极和界面电阻之和)。结果表明,Cu 突起量是中通孔 TSV 晶片与超薄 Si 膜混合键合的关键参数,通过调节 Cu 突起可以在不进行热处理的情况下实现 TSV 和 Cu 电极之间的电连接。关键词 中通孔 硅通孔(TSV) 直接Si/Cu研磨 混合键合I.引言 随着摩尔定律的放缓,带有硅通孔(TSV)[1-6]的三维集成电路(3D-IC)已经成为实现高速、超紧凑和高功能电子系统的可行解决方案。3D-IC在某些电子系统中的接受度越来越高。然而,要将3D-IC技术应用于许多电子系统,需要进一步降低TSV形成成本、实现TSV小型化和提高TSV产量。在各种TSV形成工艺中,中通孔Cu-TSV工艺可以有效减小TSV尺寸并提高TSV产量,因为该工艺易于形成(1)小TSV,并且(2)TSV与多层互连之间的电接触。然而,如果晶圆背面露出的TSV高度变化很大,则可能会发生TSV断裂或接触失效。在之前的研究中,我们提出了一种 Cu-TSV 揭示工艺,包括直接 Si/Cu 研磨和残留金属去除 [7-9](图 1),以克服这一问题。首先,使用新型玻璃化砂轮进行直接 Si/Cu 研磨,并使用高压微射流 (HPMJ) 对砂轮进行原位清洁。由于非弹性
规划: • 为所有航线(ONAV 1-5、MAX)携带带状图和未风向的喷气日志参加每次飞行活动。将它们放在飞机上随时可用,以防天气需要在飞行中更改航线。我们鼓励您为计划的航线携带风向修正的喷气日志。• 如果您计划执行备选航线(西行 1/2、东行 1/2),请查看 SDO 的航线带状图并在 JMPS 实验室中制作喷气日志。• 计划 VFR 和 IFR 出发,但除非天气需要 IFR,否则请预期使用 VFR 程序到达您的航线。• 确保您的强制性 ICP 在您的 IP 喷气日志和您的喷气日志上。• 对照 ONAV 规划指南验证喷气日志和 ONAV 带状图上的所有航线高度。• 对于路线简报,使用钢笔或铅笔作为“指针”。这是标准的军事简报专业精神,并允许您的 IP 在简报时查看带状图,而无需用手挡路。遵循简报中“行为”页面上的路线描述格式,并强调危险和高度变化。要简要介绍转弯点描述,请使用 VT-10 培训资源页面或 iPad 上的 Box 应用程序中的“ONAV”选项卡下的“转弯点图像”文件。但是,请从带状图上简要介绍您的路线,而不是您的 IPAD(iPad 上的 VFR 分区和 TPC 没有时间戳、信息框或 CHUM/VOD 更新)!• 不要计划穿过禁区或塔楼空域的路线条目。如果您正在执行 ONAV 2 或 MAX,请规划您的航线入口/出口,以避免与 Pelican 和 Area 2F 工作区域发生冲突。• 对于 Joker 燃料,您在每个点的 MCF 将在整个活动期间充当您的 Joker 燃料。这些旨在考虑您的路线以及您计划完成的任何其他计划的训练目标(特技飞行、PEL、进近)。您不会像在 FAM 阶段那样拥有单一的 Joker 燃料。地面操作: • 使用预设的 ONAV 航线飞行计划为您的计划航线设置 GPS。请务必选择 DIRECT TO 您的第一个所需航点,因为 GPS 很可能会循环到 KNPA,因为那是您当前所在的位置。将显示设置为“Super Nav 5”并调用“Programmed and Set”。根据具体出发机场的情况设置 RMU。飞行中: • 如果以目视飞行规则起飞,塔台不会将您切换至出发模式,直到您起飞并确定您已远离交通,因此请勿出于习惯自动切换至出发模式并滑行至跑道。• HATT 简报 - 开始目视导航至 PT A。• 取消建议 - 一旦清除 C 级(高于 4,200 英尺或超出 10 海里)并能够继续 VMC。如果您的路线或高度附近有云,请向您的 IP 提出建议,以帮助避免这些意外障碍。• 如果起飞 IFR 并遇到实际 IMC 条件,请注意云底。了解云底将让您了解在取消 IFR 进近之前需要下降多少,这通常在 TRADR 之前完成。