1.1 预期用户 AflaTest ® 是一种定量检测多种商品中黄曲霉毒素的方法。Vicam 的先进生物技术允许测量所有主要的黄曲霉毒素(包括 AFB1、AFB2、AFG1、AFG2 和 AFM1),而无需使用氯仿或二氯甲烷等有毒溶剂。AflaTest ® 黄曲霉毒素检测用于各种各样的地方,从当地农场升降机到食品加工质量控制实验室到政府检测实验室 - 任何快速、简便且高度准确的黄曲霉毒素分析可以防止污染并改善食品供应质量的地方。1.2 原理 黄曲霉毒素是一种来自天然霉菌的毒素,是已被证明会导致人类癌症的一类致癌物。黄曲霉毒素还会因疾病或生产效率降低而导致牲畜遭受经济损失。AflaTest ® 是一种快速、简单、安全且高度准确的方法,可用于定量测量许多商品中的黄曲霉毒素。样品通过与萃取溶液混合、搅拌和过滤来制备。然后将萃取物施加到与黄曲霉毒素特异性抗体结合的 AflaTest ® 柱上。在此阶段,黄曲霉毒素与柱上的抗体结合。然后用水冲洗柱以除去免疫亲和柱中的杂质。通过将甲醇通过柱,黄曲霉毒素从抗体中除去。然后可以将该甲醇溶液注入 HPLC 系统或在荧光计中测量。这些步骤在第 1.7 节“AflaTest ® 概述”中概述。1.3 适用性和批准 AflaTest ® 已针对许多商品中的黄曲霉毒素定量测量进行了优化。目录列出了截至本手册出版日期为特定商品开发的测试协议。如需测量本手册中未列出的商品中的黄曲霉毒素,请联系我们的技术援助部门。AflaTest ® 方法因通过亲和柱的样品量而异。通过柱的样品量越多,检测限越低。但是,当通过柱的样品量较少时,测定范围更广,测试可以更快完成。一般而言,0.2g 方法的检测范围更广,速度更快。1.0g 方法的检测限较低。两种方法均准确。
黄曲霉毒素是食品工业主要关注的有毒代谢产物,通常由曲霉菌,寄生虫和A. nomius产生。他们可以具有免疫抑制,诱变,致去性和致癌作用。黄曲霉毒素(AF)可以存在于与人类食品或动物饲料相关的谷物,香料,谷物和其他商品中。农作物可能被黄曲霉毒素污染。AFB1是最毒性和经常检测到的形式。其他类型(B2,G1和G2)如果浓度在高水平的情况下会带来重大危险。动物通过食用具有真菌菌株在生长,收获或储存过程中产生黄曲霉毒素的饲料而暴露于Aflatox-Ins中。动物毒性的症状从死亡到慢性疾病,生殖干扰,免疫抑制,牛奶和卵产量减少。全世界大多数控制的政府机构都有有关人类和动物食品中允许的AF量的法规。准确,快速确定黄曲霉毒素在商品中的存在至关重要。
黄曲霉毒素是食品工业主要关注的有毒代谢产物,通常由曲霉菌,寄生虫和A. nomius产生。他们可以具有免疫抑制,诱变,致去性和致癌作用。黄曲霉毒素可以存在于与人类食物或动物饲料相关的谷物,香料,谷物和其他商品中。农作物可能被黄曲霉毒素污染。AFB1是最毒性和经常检测到的形式。其他类型(B2,G1和G2)如果浓度在高水平的情况下会带来重大危险。动物通过食用具有真菌菌株在生长,收获或储存过程中产生黄曲霉毒素的饲料而暴露于Aflatox-Ins中。动物毒性的症状从死亡到慢性疾病,生殖干扰,免疫抑制,牛奶和卵产量减少。全世界大多数控制的政府机构都有有关人类和动物食品中允许的黄曲霉毒素数量的法规。准确,快速确定黄曲霉毒素在商品中的存在至关重要。
简介小麦(面包小麦)(Triticum Aestivum L.)是世界贸易中主要的农产品之一,代表了人类和动物消费的主要要求。它必须满足日益增长的需求,随着世界人口的增加,到2050年达到90亿以上[1],全球小麦的产量每年约为7.15亿吨,在玉米之后的消费中排名第二,在玉米中排名第二(每年10亿吨/每年),霉菌的增长是微生物杂物和储存过程中最常见的货物质量的最常见原因之一,它们可能会增加货物的差异,而货物的差异可能会造成货物的差异,而货物的差异可能会造成货物的差异,而又可能会造成货物的差异,而又可能会造成货物的差异,而又可能会造成货物的差异,而又可能会造成货物的损失,那么它们的差异是造成的,而货物的差异可能会造成货物的差异。感染并增加霉菌毒素的积累[2]。真菌是最重要的生物之一,因为首选酶在细胞之外。有许多研究表明,被称为霉菌毒素的二级代谢产物被认为是砂筒仓颗粒损伤的主要原因,可能导致中毒食物和动物饲料[3]。真菌霉菌毒素通过谷物中的购物中心传递到面粉中心。此过程将将霉菌毒素浓度水平提高到高于可接受的极限。[4],黄曲霉毒素B1是最危险的肾上腺毒素类型之一,被认为是人类和动物的强癌[5],真菌(例如,apergillus spp。,penicillium spp。fusarium spp。)和细菌(例如,沙门氏菌蜡状芽孢杆菌)污染了面粉,它们的产物可能引起许多疾病[6]。
黄曲毒素是阿富毒素(毒素)带来的一种疾病,它是一组由霉菌产生的霉菌毒素,被称为曲霉曲霉和羊皮果皮。这些霉菌通常会污染花生幼苗。黄曲霉毒素对肝脏有毒。黄曲霉病被牵涉到人类肝癌(肝癌)的原因。其在人类肝硬化中的作用仍在研究中。这些毒素会引起以急性肠炎和肝炎为特征的致命疾病爆发。除了花生幼苗外,现在众所周知,霉菌还会影响玉米,高粱和许多其他人类食物,例如米饭,木薯,小麦等。发现奶牛场的一些牛奶样本含有黄曲霉毒素。在有利的条件下,霉菌,黄曲霉的黄曲霉在高湿度中生长并污染了食物饮食。水分高于16%,温度在11°至37°C之间有利于毒素形成。
这项研究涵盖了对曲木曲霉抗花生抗性的现有文献的评论,并探讨了操纵易感基因作为抗性繁殖策略的潜力。花生(Arachis hypogaea l。)在世界上最重要的油料种子作物中排名。然而,由真菌病原体曲霉素flavus引起的黄曲霉毒素污染严重阻碍了花生生产的盈利能力和安全性。为了解决这个问题,本文始于专门针对病原体的一章,涵盖了诸如A. flavus生命周期,致病性,影响其生长的因素和黄曲霉毒素污染的因素以及建议的控制策略。到目前为止,疾病管理和黄曲霉毒素控制的传统方法表现出有限的成功。它具有专门针对病原体基因组调节的部分,包括黄曲霉毒素生物合成的调节。
黄曲霉毒素(AF)在人类和动物中引起疾病,是某些类型的真菌产生的霉菌毒素。细菌素是由细菌合成的天然抗菌物质。这些具有蛋白质结构的物质通常具有短链和小分子量。根据Klaenhammer进行的分类,特别是考虑到克(+)细菌,细菌素被分为4种不同的类别。这些是I类(IA类,IB类),II类(IIA类,IIA类,IIB类,IIC类,IID类),III类和IV类。肠肠球菌素A,sakacin A,乳杆菌A可以作为II类细菌蛋白的例子。在这项研究中,我们使用分子码头研究了AFB1黄曲霉毒素(配体)和乳酸菌素A(蛋白质)细菌的相互作用。结果表明,乳腺癌A分子有可能用于黄曲霉毒素降解。1。引言是由真菌生产的,可以生活在包括土壤在内的所有生态系统中的真菌,在有毒的二级代谢产物组中进行了评估。合适的环境温度和湿度可促进真菌生长和毒素产生。霉菌毒素分为六类:黄曲霉毒素,富莫诺蛋白,o霉素(OTA),毛毒素,曲霉烯,泽拉诺尔和麦角生物碱[1]。尤其是曲霉,寄生虫曲霉和曲霉nomius物种是黄曲霉毒素产生的物种。霉菌毒素污染了各种食品和农产品,并显着威胁人类和动物健康[2]。长期暴露于黄曲霉毒素可能会导致胚胎的DNA损伤,癌症和发育异常[3]。根据国际癌症研究机构(IARC),许多已正式证明对人类致癌的霉菌毒素被归类为第1组(Aflatoxin B1(AFB1)(AFB1),Aflatoxin B2(Afb2)(AFB2),Aflatoxin G1(Afg1)和Aflatoxin G1(AFG1)和Aflatoxin G2
霉菌毒素是真菌的有害毒性代谢产物,以污染物形式存在于许多食品、乳制品和农产品中,对健康构成潜在危害。因此,降低其生物利用度的新型净化方法对提高人类安全具有重要意义。近年来,已经开发出生物方法来控制霉菌毒素污染。利用微生物降解霉菌毒素(尤其是黄曲霉毒素 (AF),由曲霉属物种产生,主要是寄生黄曲霉、黄曲霉和黄曲霉)是一种重要的生物基方法,可降低食品中的霉菌毒素含量,且不会产生有害中间体和副产物。许多研究报告称,解毒是通过将霉菌毒素与微生物的细胞壁结构结合而发生的。解毒过程涉及多种因素,包括微生物菌株、毒素类型、微生物浓度、微生物活力和接触时间。本综述主要讨论了益生菌对霉菌毒素进行生物净化的现有文献,描述了此类过程中涉及的解毒机制以及影响相互作用稳定性的因素。还报告了该领域的未来前景。根据目前的数据,人们应该能够选择最有效的微生物来降解浓度范围广泛的霉菌毒素。
结果:在本研究中,假单胞菌属,20EI1能够降低黄曲霉的生长。此外,我们确定这种生长抑制是铁的。此外,假单胞菌20EI1减少或阻断了黄曲霉毒素的产生,以及环皮二唑酸和曲酸。在细菌的存在下改变了铁相关基因的表达,而参与产生黄曲霉毒素的基因被下调。铁补充部分重新建立了它们的表达。细菌还降低了其他继发代谢产物(SM)基因的表达,包括参与环皮二唑酸,曲酸和imizoquin生物合成的簇的基因,而聚类的基因与曲霉菌素相对应。有趣的是,全局SM调节基因MTFA被20EI1显着上调,这可能有助于观察到的SM发生变化。
本研究旨在调查和鉴定与哈科特港 Rumuolumeni 的 Eagle 水泥垃圾场相关的真菌。在两个垃圾场的不同地点采集土壤样本。将土壤样本放入不同的干净尼龙袋中,并在无菌和新鲜制备的平板计数琼脂 (PCA) 上进行培养。所有技术均按照制造商说明的标准实验室条件进行。接种重复三次,并记录为土壤样本中的平均总可行真菌数。从 Eagle 水泥垃圾场分离、表征和鉴定了四 (4) 种真菌。在调查期间分离的所有生物中,鉴定的真菌有黄曲霉、黑曲霉、青霉菌和镰刀菌。黄曲霉菌种的出现率最高,为 36.3%,青霉菌和镰刀菌种的出现率最低(18.2%)。共记录到真菌数量 9.89 × 10 7 ,平均数量为 3.29 × 10 7 。