脑机接口 (BCI) 技术通过脑电图 (EEG) 将人与机器连接起来。BCI 的机制是模式识别,通过特征提取和分类进行。各种特征提取和分类方法可以区分人类的运动,尤其是手部运动。这些方法的组合可以大大提高结果的准确性。本文探讨了多层极限学习机 (ML-ELM) 计算的九种特征提取类型的性能。在不同数量的 EEG 通道和不同的 ML-ELM 结构上测试了所提出的方法。此外,在离线模式下对真实和虚构的手部运动进行分类时,将 ML-ELM 的性能与 ELM、支持向量机和朴素贝叶斯的性能进行了比较。以离散小波变换 (DWT) 作为特征提取的 ML-ELM 优于其他分类方法,最高准确率为 0.98。因此,作者还发现结构影响 ML-ELM 对不同任务、使用的特征提取和使用的通道的准确性。