脑机接口是一种无需肌肉和声音,直接通过处理过的电信号从大脑操作设备的技术。该技术的工作原理是捕获大脑的电信号或磁信号,然后对其进行处理以获取其中包含的信息。通常,BCI 使用基于各种变量的脑电图 (EEG) 信号中的信息。这项研究提出了基于 EEG 信号信息的 BCI 来移动外部设备,例如无人机模拟器。从 EEG 信号中提取运动想象 (MI) 和焦点变量,使用小波。然后,通过循环神经网络 (RNN) 对它们进行分类。为了克服 RNN 记忆消失的问题,使用了长短期记忆 (LSTM)。结果表明,BCI 使用小波,而 RNN 可以驱动非训练数据的外部设备,准确率为 79.6%。实验表明,AdaDelta 模型在准确性和价值损失方面优于 Adam 模型。而在计算学习时间方面,Adam 模型比 AdaDelta 模型更快。
主要关键词