Shor 算法用于整数因式分解,是一种多项式时间量子计算机算法。通俗地说,它解决了以下问题:给定一个整数,找到它的素因数。它是由美国数学家 Peter Shor 于 1994 年发明的。在量子计算机上,要对整数 N 进行因式分解,Shor 算法需要多项式时间(所用时间为多项式,即输入的整数的大小)。如果具有足够数量量子比特的量子计算机能够在不屈服于量子噪声和其他量子退相干现象的情况下运行,那么 Shor 算法可用于破解公钥加密方案,例如广泛使用的 RSA 方案。RSA 基于对大整数进行因式分解在计算上是困难的假设。据了解,该假设适用于经典(非量子)计算机;目前尚无可以在多项式时间内对整数进行因式分解的经典算法。 Shor 算法在理想的量子计算机上对整数分解非常有效,因此通过构建大型量子计算机来击败 RSA 是可行的。它有助于设计和构建量子计算机,以及研究新的量子计算机算法。它还有助于研究不受量子计算机保护的新型密码系统,统称为后量子密码学。
主要关键词