fMRI 的最新研究重点是放宽大脑在实验过程中处于静态的假设。许多研究表明,在单次扫描过程中,大脑是随时间变化的(或动态的)(Chang and Glover,2010;Sakoglu 等人,2010;Hutchison 等人,2013;Calhoun 等人,2014;Faghiri 等人,2018;Lurie 等人,2020)。分析大脑动态方面的一种常用方法是使用滑动窗口结合连接估计器(例如 Pearson 相关)来估计随时间变化的连接(Handwerker 等人,2012;Allen 等人,2014)。这种方法很有用并且被广泛使用,部分原因是它很简单,但它也有一些局限性。对数据进行窗口化会导致 fMRI 中的时间信息变得平滑,可能会丢失重要信息。此方法的一个较小的问题是,必须使用特定的窗口长度进行此分析,而更改此窗口长度可能会改变最终结果(Sakoglu 等人,2010 年;Shakil 等人,2016 年)。为了解决平滑问题,已经提出了几种方法,这些方法要么更即时(Shine 等人,2015 年;Omidvarnia 等人,2016 年;Faghiri 等人,2020 年),要么使用不同的滤波和时频方法来探索连通性的全频谱(Chang 和 Glover,2010 年;Yaesoubi 等人,2015 年;Faghiri 等人,2021 年)。有关时变连通性的更详细评论,请参阅(请参阅 Bolton 等人,2020 年;Iraji 等人,2020a)。许多基于连接性的方法并不直接利用数据在其原始高维空间中的动态性(即,使用数据计算滑动窗口相关性,该相关性在每个组件对之间分别计算)。这导致需要在许多独立于其他 2D 空间的二维 (2D) 空间中检查数据(其中每个 2D 空间特定于一个组件对)。最近,有人提出了新方法,尝试使用不同的方法从这些 2D 空间转到更高维度(Faskowitz 等人,2020 年;Iraji 等人,2020b 年)。除了基于连接性的方法外,还有其他方法旨在直接从活动域信息中提取动态性。例如,隐马尔可夫模型已用于从 fMRI 中的活动数据中估计几个隐藏状态(Karahano˘glu 和 Van De Ville,2017 年;Vidaurre 等人,2018 年)。其他方法要么直接将活动信息纳入管道(Fu 等人,2021 年),要么专注于基于活动(如功率)计算的指标(Chen 等人,2018 年)。此外,还有一系列基于大脑不同部分之间共同激活的方法,它们也直接将活动信息纳入分析管道(Liu 和 Duyn,2013 年;Karahanoglu 和 Van De Ville,2015 年)。在过去十年中,许多研究使用静息状态(Damaraju 等人,2014 年;Guo 等人,2014 年;Faghiri 等人,2021 年)和任务 fMRI(Boksman 等人,2005 年;Ebisch 等人,2014 年)比较了精神分裂症患者的大脑与健康对照者的大脑。最近,人们更加重视探索大脑动态方面的方法(Damaraju 等人,2014 年;Kottaram 等人,2019 年;Giufford 等人,2020 年;Faghiri 等人,2021 年)。使用动态方法,一些研究报告称个体的活力较低
主要关键词