背景:在临床实践中,EEG 是通过视觉评估的。出于实际原因,记录通常需要使用较少数量的电极,而伪影会使评估变得困难。为了规避这些障碍,可以使用不同的插值技术。这些技术通常在电极密度较高时表现更好,而在远离电极的区域插值的值可能不可靠。使用学习皮质电场的统计分布并预测值的方法可能会产生更好的结果。新方法:基于卷积层的生成网络经过训练,可以从 4 或 14 个通道上采样,或动态恢复单个缺失通道以重新创建 21 通道 EEG。来自坦普尔大学医院 EEG 数据库的 1,385 名受试者的 5,144 小时数据用于训练和评估网络。与现有方法的比较:将结果与球面样条插值进行比较。使用了几种统计测量方法以及由委员会认证的临床神经生理学家进行的视觉评估。总体而言,生成网络的表现明显更好。经验丰富的 EEG 解释人员将真实数据和网络生成的数据评定为人工的示例数量没有差异,而插值生成的数据的数量则明显更高。此外,随着纳入的受试者数量的增加,网络性能得到改善,在 5 – 100 名受试者的范围内效果最佳。结论:使用神经网络恢复或上采样 EEG 信号是球面样条插值的可行替代方案。
主要关键词