我们首先应该尝试定义主题。一般来说,我们将神经符号人工智能(简称 NeSy AI)理解为人工智能(简称 AI)领域的一个子领域,该领域致力于将人工智能中的神经和符号传统结合在一起以增加价值。当前使用了不同的拼写,包括神经符号和神经符号,也包括符号亚符号和其他 - 我们认为它们是相同的。在这种情况下,术语神经是指广义上的人工神经网络或联结系统的使用。术语符号是指基于显式符号操作的人工智能方法。这通常包括术语重写、图形算法和自然语言问答等。然而,它通常被更狭义地理解为基于形式逻辑的方法,例如在人工智能的子领域“知识表示和推理”中所使用的方法。然而,这些界限很容易模糊,出于本概述的目的,我们不会将自己局限于基于逻辑的方法。NeSy AI 的总体前景在于希望实现两全其美的局面,其中神经和符号方法的互补优势可以以有利的方式结合起来。在神经方面,理想的优势包括可从原始数据进行训练和对底层数据故障的鲁棒性,而在符号方面,人们希望保留这些系统固有的高可解释性和可证明的正确性,以及在其设计和功能中轻松利用人类专家的深厚知识。在功能特征方面,将符号方法与机器学习(尤其是目前研究最为活跃的深度学习)相结合,人们希望在词汇处理、小数据集训练、错误恢复以及总体可解释性等问题上做得更好,而不是仅仅依赖深度学习的系统。神经和符号人工智能方法之间的一个根本区别与我们的讨论有关,即人工智能系统中信息的表示。对于符号系统,表示是明确的,原则上人类可以理解。例如,正方形(x)→长方形(x)这样的规则很容易通过符号方式理解和操作。然而,在神经系统中,表示通常是通过(许多)神经元之间的加权连接和/或对(可能大量)神经元的同时激活来实现的。特别是,人类观察者无法轻易识别所表示的内容。
主要关键词