Loading...
机构名称:
¥ 1.0

摘要 — 人类通过感知(将来自环境的感官输入转换为符号)和认知(将符号映射到有关环境的知识以支持抽象、类比推理和长期规划)与环境进行交互。在人工智能的背景下,人类感知启发的机器感知是指使用使用自监督学习目标(例如下一个单词预测或对象识别)训练的神经网络从原始数据中进行大规模模式识别。另一方面,机器认知包含更复杂的计算,例如使用环境知识来指导推理、类比和长期规划。人类还可以控制和解释他们的认知功能。这似乎需要保留从感知输出到有关环境的知识的符号映射。例如,人类可以遵循和解释在医疗保健、刑事司法和自动驾驶等安全关键应用中推动其决策的准则和安全约束。虽然数据驱动的基于神经网络的人工智能算法可以有效地对机器感知进行建模,但基于符号知识的人工智能更适合对机器认知进行建模。这是因为符号知识结构支持从感知输出到知识的映射的显式表示,从而实现对人工智能系统决策的可追溯性和审计。通过跟踪人工智能系统的输入、输出和中间步骤,此类审计线索可用于执行安全的应用方面,例如法规遵从性和可解释性。神经符号人工智能部门的这篇第一篇文章介绍并概述了迅速兴起的神经符号人工智能范式,该范式结合了神经网络和知识引导的符号方法,以创建更强大、更灵活的人工智能系统。这些系统具有巨大的潜力,可以提高人工智能系统的算法级(例如抽象、类比、推理)和应用级(例如可解释和安全约束决策)能力。

神经符号人工智能(为什么、是什么以及如何)

神经符号人工智能(为什么、是什么以及如何)PDF文件第1页

神经符号人工智能(为什么、是什么以及如何)PDF文件第2页

神经符号人工智能(为什么、是什么以及如何)PDF文件第3页

神经符号人工智能(为什么、是什么以及如何)PDF文件第4页

神经符号人工智能(为什么、是什么以及如何)PDF文件第5页

相关文件推荐

2024 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2023 年
¥3.0
2024 年
¥4.0
2023 年
¥1.0
2013 年
¥3.0
2024 年
¥1.0
2023 年
¥5.0
2023 年
¥2.0
2020 年
¥9.0
2024 年
¥4.0
2022 年
¥3.0
2021 年
¥6.0
2023 年
¥1.0
2024 年
¥3.0
2024 年
¥1.0
2021 年
¥1.0
2023 年
¥1.0
2020 年
¥3.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥11.0
2024 年
¥2.0