Loading...
机构名称:
¥ 1.0

土地利用/土地覆盖 (LULC) 描述了地球的特征并表明了土地如何用于各种活动。土地覆盖变化是一个持续的过程,与城市化、森林砍伐、湖泊干涸、农业用地过度利用等有关。因此,它构成了经济规划和资源管理的重要基础。然而,在空间域中准备 LULC 数据是一项耗时费力的工作,需要大量的人力资源。在使用遥感卫星数据时,对一个区域的 LULC 进行分类是一项重大挑战。在过去十年中,机器学习 (ML) 因其强大的学习能力而呈现出日益上升的趋势和极大的兴趣,因为它能够在多个处理层上学习具有多个抽象级别的数据样本表示。由于 ML 方法的输出一致且对人为干预的要求较少,因此使用该方法对土地特征进行分类是地理空间领域的正确方法和当前趋势。用于 LULC 分类的 ML 技术:支持向量机 (SVM)、随机森林 (RF)、最大似然分类器 (ML) 和深度人工神经网络 (ANN) 等监督算法是从多光谱卫星图像中提取主题信息的一些常用方法。1. 2001 年,Breiman 提出了一种集成分类方法,即随机森林 (RF)

17. 土地利用土地覆盖分类的初级阶段

17. 土地利用土地覆盖分类的初级阶段PDF文件第1页

17. 土地利用土地覆盖分类的初级阶段PDF文件第2页

17. 土地利用土地覆盖分类的初级阶段PDF文件第3页

相关文件推荐