Loading...
机构名称:
¥ 1.0

机器学习技术最近已成为检测金融市场模式的常态。但是,仅依靠机器学习算法进行决策可能会产生负面影响,尤其是在金融等关键领域。另一方面,众所周知,将数据转化为可操作的见解即使对于经验丰富的从业者来说也是一项挑战,尤其是在金融界。鉴于这些令人信服的理由,这项工作提出了一种由可解释的人工智能技术驱动的机器学习方法,该方法集成到统计套利交易管道中。具体来说,我们提出了三种方法来丢弃与预测任务无关的特征。我们对标准普尔 500 指数成分股的历史数据评估了这些方法,旨在不仅提高股票层面的预测性能,而且提高股票集层面的整体预测性能。我们的分析表明,包含此类特征选择方法的交易策略通过提供预测信号来改善投资组合的表现,这些预测信号的信息内容足够,并且比嵌入整个特征集中的信号噪音更小。通过进行深入的风险回报分析,我们表明,由可解释的人工智能驱动的拟议交易策略优于被视为基线的高度竞争交易策略。

由可解释人工智能驱动的统计套利

由可解释人工智能驱动的统计套利PDF文件第1页

由可解释人工智能驱动的统计套利PDF文件第2页

由可解释人工智能驱动的统计套利PDF文件第3页

由可解释人工智能驱动的统计套利PDF文件第4页

由可解释人工智能驱动的统计套利PDF文件第5页

相关文件推荐