Loading...
机构名称:
¥ 6.0

学习与推理的融合是当今人工智能和机器学习面临的关键挑战之一,各个社区都在努力解决这一问题。对于神经符号计算 (NeSy) 领域尤其如此 [ 11 , 23 ],其目标是整合符号推理和神经网络。NeSy 已经有悠久的传统,最近引起了各个社区的广泛关注(参见Y. Bengio 和 H. Kautz 在 AAAI 2020 上关于这个主题的主题演讲,Y. Bengio 和 G. Marcus 之间的 AI 辩论 [ 10 ])。另一个在融合学习和推理方面有着丰富传统的领域是统计关系学习和人工智能 (StarAI) [ 41 , 89 ]。但是,它不是专注于整合逻辑和神经网络,而是围绕着将逻辑与概率推理(更具体地说是概率图模型)相结合的问题。尽管人们共同关注将符号推理与学习的基本范式(即概率图模型或神经网络)相结合,但令人惊讶的是,这两个领域之间并没有更多的相互作用。这种差异是本次调查背后的主要动机:它旨在指出这两项努力之间的相似之处,并希望以这种方式促进相互影响。为此,我们从 StarAI 的文献开始,

从统计关系到神经符号人工智能:一项调查。

从统计关系到神经符号人工智能:一项调查。PDF文件第1页

从统计关系到神经符号人工智能:一项调查。PDF文件第2页

从统计关系到神经符号人工智能:一项调查。PDF文件第3页

从统计关系到神经符号人工智能:一项调查。PDF文件第4页

从统计关系到神经符号人工智能:一项调查。PDF文件第5页

相关文件推荐

2021 年
¥1.0
2021 年
¥1.0
2022 年
¥8.0
2022 年
¥1.0
2022 年
¥1.0
2021 年
¥1.0