[书名、编辑、印刷 ISBN 或在线 ISBN、页数、年份和 DOI 或 URL]。人们普遍认为,学习和推理对于实现真正的(人工智能)都至关重要 [1]。这也解释了为什么神经符号人工智能 (NeSy) [2、3、4、5](它将高级推理与低级感知相结合)的探索在研究议程中占据重要地位。推理的两个最突出的框架是逻辑和概率。</div>虽然在过去,它们是由人工智能领域的不同社区进行研究的,但大量研究人员一直致力于将它们整合,并旨在将概率与逻辑和统计学习结合起来;参见统计关系人工智能 (StarAI) [6、7] 和概率逻辑编程 [8] 领域。统计关系人工智能方法的推理能力与深度学习的强大模式识别能力相得益彰。通常,神经符号系统将逻辑与神经网络相结合。概率论已经与逻辑(参见统计关系人工智能)和神经网络相结合。因此,考虑逻辑、神经网络和概率的集成是有意义的。这有效地导致了概率逻辑与神经网络的集成,并开辟了新的能力。此外,尽管乍一看,包括