摘要 车载入侵检测系统 (IV-IDS) 是用于检测针对电动或自动驾驶汽车的网络攻击的保护机制之一,其中基于异常的 IDS 解决方案在检测攻击尤其是零日攻击方面具有更好的潜力。通常,由于难以区分正常数据和攻击数据,IV-IDS 会产生误报(错误地将正常数据检测为攻击)。它可能导致不良情况,例如系统松懈加剧,或在生成警报后事件处理中的不确定性。借助复杂的人工智能 (AI) 模型,IDS 提高了检测到攻击的机会。然而,使用这种模型是以降低可解释性为代价的,可解释性这一特性在确定其他各种有价值的需求时被认为很重要,例如模型的信任、因果关系和稳健性。由于基于人工智能的复杂 IV-IDS 缺乏可解释性,人类很难信任这样的系统,更不用说知道当 IDS 标记攻击时应该采取什么行动。通过使用可解释人工智能 (XAI) 领域的工具,本论文旨在探索可以根据模型预测产生什么样的解释,以进一步提高基于人工智能的 IV-IDS 的可信度。通过比较调查,在自定义、伪全局、基于可视化的解释(“VisExp”)和基于规则的解释上评估了与可信度和可解释性相关的方面。结果表明,VisExp 提高了可信度,并增强了基于人工智能的 IV-IDS 的可解释性。关键词:入侵检测系统、车载入侵检测系统、机器学习、深度学习、可解释人工智能、可信度。
主要关键词