人工智能 (AI) 被认为是一种先进的技术,可以以高精度和精确度协助决策过程。然而,由于依赖复杂的推理机制,许多 AI 模型通常被评价为黑匣子。这些 AI 模型如何以及为何做出决策的复杂性往往无法被人类用户理解,导致人们对其决策的可接受性感到担忧。先前的研究表明,缺乏以人类可理解的形式提供的相关解释会使最终用户无法接受这些决策。在这里,可解释 AI (XAI) 的研究领域提供了广泛的方法,其共同主题是研究 AI 模型如何做出决策或解释决策。这些解释方法旨在提高决策支持系统 (DSS) 的透明度,这在道路安全 (RS) 和空中交通流量管理 (ATFM) 等安全关键领域尤其重要。尽管不断发展,但 DSS 仍处于安全关键应用的发展阶段。 XAI 带来的透明度提高,成为使这些系统在实际应用中可行、解决可接受性和信任问题的关键推动因素。此外,根据欧盟委员会目前授予的解释权以及世界各地组织的类似指令,认证机构不太可能批准这些系统用于一般用途。这种将解释渗透到现行系统中的迫切愿望为以 DSS 为中心的 XAI 研究铺平了道路。
主要关键词