基于冯·诺依曼架构和经典神经网络的现代人工智能 (AI) 系统与哺乳动物的大脑相比具有许多基本局限性。在本文中,我们将讨论这些局限性及其缓解方法。接下来,我们将概述目前可用的神经形态 AI 项目,这些项目通过将一些大脑特征引入计算系统的功能和组织来克服这些局限性(TrueNorth、Loihi、Tianjic、SpiNNaker、BrainScaleS、NeuronFlow、DYNAP、Akida、Mythic)。此外,我们还介绍了根据神经形态 AI 系统所使用的大脑特征对其进行分类的原则:联结主义、并行性、异步性、信息传输的脉冲性质、设备上学习、本地学习、稀疏性、模拟和内存计算。除了回顾基于现有硅微电子技术的神经形态设备所使用的新架构方法外,我们还讨论了使用新忆阻器元件基座的前景。我们还给出了在神经形态应用中使用忆阻器的最新进展示例。
主要关键词