摘要 医学界高度关注的领域之一是从脑磁共振成像 (MRI) 中分割肿瘤。早期诊断恶性肿瘤对于为患者提供治疗是必要的。如果及早发现,患者的预后将会改善。医学专家在诊断脑肿瘤时使用手动分割方法。本研究提出了一种简化和自动化该过程的新方法。在最近的研究中,多级分割已广泛应用于医学图像分析,分割方法的有效性和精度与使用的分割数量直接相关。然而,选择合适的分割数量通常由用户决定,并且对于许多分割算法来说都是具有挑战性的。所提出的方法是基于 3D 直方图的分割方法的修改版本,该方法可以自动确定合适的分割数量。一般算法包含三个主要步骤:第一步是使用高斯滤波器平滑图像的 3D RGB 直方图。这样可以消除过于接近的不可靠和非主导直方图峰值。接下来,多峰粒子群优化方法识别直方图的峰值。最后,根据非欧几里得距离将像素放置在最符合其特征的聚类中。所提出的算法已经应用于癌症成像档案 (TCIA) 和脑 MRI 图像的脑肿瘤检测数据集。将所提出方法的结果与三种聚类方法的结果进行了比较:FCM、FCM_FWCW 和 FCM_FW。在对各种 MRI 切片进行这三种算法的比较分析中。我们的算法始终表现出卓越的性能。它在这三个指标中都获得了最高平均排名,表明了其在聚类中的稳健性和有效性。所提出的方法在实验中是有效的,证明了它能够找到适当的聚类。
主要关键词