Loading...
机构名称:
¥ 1.0

据神经病学专家介绍,脑肿瘤对人类健康构成严重威胁。脑肿瘤的临床识别和治疗在很大程度上依赖于准确的分割。脑肿瘤的大小、形状和位置各不相同,这使得准确的自动分割成为神经科学领域的一大障碍。U-Net 凭借其计算智能和简洁的设计,最近已成为解决医学图片分割问题的首选模型。局部接受场受限、空间信息丢失和上下文信息不足的问题仍然困扰着人工智能。卷积神经网络 (CNN) 和梅尔频谱图是这种咳嗽识别技术的基础。首先,我们在各种复杂的设置中组合语音并改进音频数据。之后,我们对数据进行预处理以确保其长度一致并从中创建梅尔频谱图。为了解决这些问题,提出了一种用于脑肿瘤分割 (BTS) 的新型模型,即智能级联 U-Net (ICU-Net)。它建立在动态卷积的基础上,使用非局部注意力机制。为了重建脑肿瘤的更详细空间信息,主要设计是两阶段级联 3DU-Net。本文的目标是确定最佳可学习参数,以最大化数据的可能性。在网络能够为 AI 收集长距离依赖关系之后,将期望最大化应用于级联网络的横向连接,使其能够更有效地利用上下文数据。最后,为了增强网络捕捉局部特征的能力,使用具有局部自适应能力的动态卷积代替级联网络的标准卷积。我们将我们的结果与其他典型方法的结果进行了比较,并利用公开的 BraTS 2019/2020 数据集进行了广泛的测试。根据实验数据,建议的方法在涉及 BTS 的任务上表现良好。肿瘤核心(TC)、完整肿瘤、增强肿瘤分割BraTS 2019/2020验证集的Dice评分分别为0.897/0.903、0.826/0.828、0.781/0.786,表明在BTS中具有较高的性能。

使用神经技术支持的智能级联 U-Net 模型进行脑肿瘤分割

使用神经技术支持的智能级联 U-Net 模型进行脑肿瘤分割PDF文件第1页

使用神经技术支持的智能级联 U-Net 模型进行脑肿瘤分割PDF文件第2页

使用神经技术支持的智能级联 U-Net 模型进行脑肿瘤分割PDF文件第3页

使用神经技术支持的智能级联 U-Net 模型进行脑肿瘤分割PDF文件第4页

使用神经技术支持的智能级联 U-Net 模型进行脑肿瘤分割PDF文件第5页

相关文件推荐