量子力学与技术的结合有许多前景,其中量子计算机可能是最引人注目的一个。尽管有这种说法,量子计算机尚未出现。原因是量子力学和技术存在相互竞争的要求。量子计算机的比特,即量子比特,可以同时具有值 | 0 ⟩ 和 | 1 ⟩,而传统计算机的比特要么是 0,要么是 1。这称为叠加。其次,量子比特是纠缠的,这意味着它们的值是相连的。量子计算机的优势在于纠缠和叠加的结合:所有量子比特同时执行复杂的计算,同时它们也同时具有所有可能的值。这使得量子计算机比传统计算机快得多。量子计算机中的量子比特应该用量子力学对象来实现,并且它们应该能够进行不受干扰的相干演化。换句话说,它们应该是轻的、冷的和孤立的。另一方面,硬件实现要求系统足够大,并与测量设备足够强地耦合。这种冲突非常普遍,来自不同物理学领域的各种解决方案都有不同的提案。例如,量子信息可以编码在分子中电子的各种自旋(NMR 方法)[96]、固态电子的自旋 [53] 或捕获离子的内部状态 [15] 中。但还有更多的提案 [44],包括一些乍一看非常奇特的提案,比如基于二维系统中 N 粒子配置拓扑的量子比特 [75, 8]。本篇论文研究了使用气相里德堡原子的状态作为量子比特的想法,这些原子是处于高度激发态的原子。量子计算机需要涉及多个量子位的运算,特别是 XOR 运算,这需要量子位之间的相互作用。相互作用的里德堡原子系统可以执行此任务,并且具有一些独特的优势:
主要关键词