医学图像通常需要重新缩放到各种空间分辨率,以确保在不同层面上的解释。传统的基于深度学习的图像超分辨率 (SR) 增强了固定尺度的分辨率。隐式神经表征 (INR) 是一种实现任意尺度图像 SR 的有前途的方法。然而,现有的基于 INR 的方法需要重复执行神经网络 (NN),这既慢又低效。在本文中,我们提出了用于快速任意尺度医学图像 SR 的神经显式表征 (NExpR)。我们的算法用显式解析函数表示图像,其输入是低分辨率图像,输出是解析函数的参数化。通过单个 NN 推理获得解析表示后,可以通过在所需坐标处评估显式函数来得出任意尺度的 SR 图像。由于解析显式表示,NExpR 比基于 INR 的方法快得多。除了速度之外,我们的方法还实现了与其他强大竞争对手相当或更好的图像质量。在磁共振成像 (MRI) 数据集(包括 ProstateX、fastMRI 和我们内部的临床前列腺数据集)以及计算机断层扫描 (CT) 数据集(特别是 Medical Segmentation Decathlon (MSD) 肝脏数据集)上进行的大量实验证明了我们方法的优越性。我们的方法将重新缩放时间从 1 毫秒的数量级缩短到 0.01 毫秒的数量级,实现了超过 100 倍的加速,同时不损失图像质量。代码可在 https://github.com/Calvin-Pang/NExpR 上找到。
主要关键词