深度学习技术越来越多地用来以高准确性对医学成像数据进行分类。尽管如此,由于训练数据通常有限,这些模型可能缺乏足够的可推广性来预测不同领域中产生的未见测试数据,并具有可观的性能。本研究的重点是甲状腺组织病理学图像分类,并研究了只有156个患者样品训练的生成对抗网络[GAN]是否可以产生高质量的合成图像以充分增强训练数据并改善整体模型的可推广性。利用stylegan2方法,生成网络生成的图像产生了频率创造距离(FID)分数为5.05的图像,匹配的最新gan会导致具有可比数据集尺寸的非医疗域。当对从三个单独的域中采购的外部数据进行测试时,使用这些GAN生成的图像对训练数据进行培训数据增加了模型,将总体精度和AUC分别提高了7.45%和7.20%,而基线模型则分别提高了7.45%和7.20%。最重要的是,在训练有素的病理学家进行分类时,在少数群体图像,肿瘤亚型上观察到了这种绩效改善。
主要关键词