Loading...
机构名称:
¥ 1.0

抽象 - 各个年龄段和社会经济水平的人,正在被诊断出患有2型糖尿病的诊断,其速度比以往任何时候都高。它可能是多种疾病的根本原因,其中最著名的包括失明,肾脏疾病,肾脏疾病和心脏病。因此,设计系统的设计至关重要,基于医疗信息,能够可靠地检测患有糖尿病的患者。我们提出了一种鉴定糖尿病的方法,该方法涉及使用交叉验证训练模式在五到10倍之间训练深神经网络的特征。PIMA印度糖尿病(PID)数据集是从UCI的机器学习存储库一部分的数据库中检索的。此外,十倍交叉验证的结果显示出97.8%的精度,召回97.8%,使用RF算法的PIMA数据集的精度为97.8%。这项研究检查了许多其他生物医学数据集,以证明机器学习可以用于开发可以准确预测糖尿病的有效系统。在生物数据集的实验发现中使用了几种不同类型的机器学习分类器,例如KNN,J48,RF和DT。获得的发现表明我们的可训练模型能够正确分类生物医学数据。通过实现Parikson数据集的较高精度,召回和精确度来证明这一点。

糖尿病和生物医学的一种新的预处理方法...

糖尿病和生物医学的一种新的预处理方法...PDF文件第1页

糖尿病和生物医学的一种新的预处理方法...PDF文件第2页

糖尿病和生物医学的一种新的预处理方法...PDF文件第3页

糖尿病和生物医学的一种新的预处理方法...PDF文件第4页

糖尿病和生物医学的一种新的预处理方法...PDF文件第5页