在过去的几年中,卷积神经网络(CNN)占据了计算机视觉领域的主导,这要归功于它们在分类问题中提取功能及其出色表现的能力,例如在X射线自动分析中。不幸的是,这些神经网络被视为黑盒算法,即不可能了解该算法是如何实现最终结果的。将这些算法应用于不同领域并测试方法的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实情况下,例如胸部X射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是阶级失衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了新的可解释的AI技术。此技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即他们标志着专家将用来做出决定的领域。©2023作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
主要关键词