2009年由Aram Harrow,Avinatan Hassidim和Seth Lloyd提出的HHL算法用于求解方程的线性系统。我们将经典算法的操作计数与HHL算法进行比较,该算法是一种量子算法,可提高计算速度。要解决这样的线性系统,我们以A |形式抛弃了我们的问题x⟩= | b⟩,哪里| x⟩和| B⟩是归一化的向量,A是遗传学矩阵。该过程涉及通过使用量子相估计(QPE)子例程来找到Ma-Trix的特征值。这反过来利用了反量子傅立叶变换(QFT)。然后,确定的特征值用于实现受控的机构,以有效地找到矩阵a的倒数。这使我们能够计算| X = A - 1 | B⟩。最后一步是取消计算相位估计。我们接下来讨论该算法在物理硬件上的实现,并在IBM的量子计算机上模拟结果。