LONGITUDINAL WHOLE-BRAIN FUNCTIONAL NETWORK CHANGE PATTERNS OVER A TWO-YEAR PERIOD IN THE ABCD DATA Rekha Saha, Debbrata K. Saha, Md Abdur Rahaman, Zening Fu, Vince D. Calhoun Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303抽象功能网络连接(FNC)是评估大脑网络之间时间依赖性的有用度量。内在功能的纵向变化引起了极大的兴趣,但是迄今为止,几乎没有关注FNC变化随发展的多元模式。在本文中,我们提出了一种新型方法,该方法使用FNC矩阵来估计多重重叠的脑功能变化模式(FCP)。我们将这种方法应用于大规模的青少年大脑和认知发展(ABCD)数据。结果揭示了几个高度结构化的FCP,显示了两年内的重大变化,包括视觉(VS)和感觉运动(SM)域之间的大脑功能连接性。这种FNC表达的模式随着年龄的增长而变得更强。我们还发现了男性和女性之间的变化差异模式。我们的方法提供了一种评估纵向数据中整个大脑功能变化的有力方法。