Loading...
机构名称:
¥ 1.0

量子系统热力学的研究可以追溯到量子理论的起源,但最近,随着重大进展 [1] 的出现,人们对此的兴趣激增,其中量子信息理论工具的使用起着关键作用 [2 – 8] 。尽管取得了这些进展,但基本问题仍然存在争议。突出的例子包括量子领域的热力学功概念 [9 – 13] ,量子相干性的作用及其作为热力学资源的潜在用途 [14 – 21] 。在此背景下,对热机和量子机器的研究已被证明是有用的,有助于说明量子装置的能力和局限性 [22 – 31] 。对这些装置的分析建立了热机中功波动和耗散之间的权衡 [32,33] ,当对存储设备进行并行集体操作时,充电功率会增加 [34 – 37] 而波动会减少 [38] ,这在热机 [39] 和难以区分的热机 [40] 的许多循环中都具有充电功率优势,而且在考虑关联热机时效率会提高 [41] 。另一方面,研究也表明,纠缠对于功提取并不是必不可少的 [42] ,在给电池充电的高斯运算集合中,存储的功不可没地会出现波动 [43] 。与此同时,Mandalstam 和 Tamm 考虑了量子力学对量子演化速率的限制 [44] 。通过考虑一个状态演变为正交状态所需的最短时间,他们的工作启发了广泛的结果[45-54],这些结果通常包含在进化的量子速度限制这一术语下[55]。

可提取功的波动限制了量子电池的充电功率

可提取功的波动限制了量子电池的充电功率PDF文件第1页

可提取功的波动限制了量子电池的充电功率PDF文件第2页

可提取功的波动限制了量子电池的充电功率PDF文件第3页

可提取功的波动限制了量子电池的充电功率PDF文件第4页

可提取功的波动限制了量子电池的充电功率PDF文件第5页

相关文件推荐

2020 年
¥1.0