在描述物理系统时,数学表示的选择非常重要,而这种选择通常由手头问题的性质决定。在这里,我们研究了鲜为人知的量子动力学波算子表示,并探索了它与量子动力学标准方法(如维格纳相空间函数)的联系。该方法以密度矩阵的平方根为中心,因此比标准表示具有几个不寻常的优势。通过将其与从量子信息中引入的净化技术相结合,我们能够获得许多结果。这种形式不仅能够在量子和经典动力学的相和希尔伯特空间表示之间提供自然的桥梁,我们还发现波算子表示可以导致实时间和虚时间动力学的新型半经典近似,以及与经典极限的透明对应。然后证明存在许多场景(例如热化),其中波算子表示具有等效的幺正演化,这对应于密度矩阵的非线性实时动力学。我们认为,波算子提供了一种将以前不相关的表示联系起来的新视角,并且是无法以其他方式保证正性的场景(例如混合)的自然候选模型。
主要关键词