Loading...
机构名称:
¥ 1.0

由于量子物理学的起源,人类观察者在波动函数的干扰崩溃中的作用是核心作用。对我们的经典直觉挑战导致了一系列提出的悖论,这主要是由于显微镜量子现象推断了我们独特的宏观人类经验。违反直觉的Gedankenexperments,如Schr odinger的Cat [1]和Wigner的朋友[2]的著名案例,说明了假设量子理论的后果[3]的历史困难。进一步,还提出了关于大脑过程中可及量子现象的风险猜想,特别是为了使人类自由意志,思想模型,决策和意识[4-6]。从这个意义上讲,从硬件和湿软件科学的娱乐性到尖端应用程序,在科学和技术上都是开创性的,人们在人类大脑与量子计算机(QC)之间建立了更紧密的联系。但是,我们对大脑,思想以及意识可能含义的任何理解仍然是基本的。这使得直接将大脑与外部量子设备或量子处理器连接起来很难[7,8]。尽管如此,人工智能(AI)可能会在我们的营救中实现这一原本不可能的任务,在21世纪的这一点上。在过去的几十年中,我们可能会发现自下而上的方法,以考虑生物学特性与量子态的合并。在量子生物学的情况下,可能的量子特征可能解释了光合作用的效率[9]。此外,正在研究神经形态技术以节省能量并增强AI应用[10]。最近,在量子计算机中提出并实现了以生物启发的量子人工寿命[11],而神经形态量子

量子脑网络:透视 - 珍珠

量子脑网络:透视 - 珍珠PDF文件第1页

量子脑网络:透视 - 珍珠PDF文件第2页

量子脑网络:透视 - 珍珠PDF文件第3页

量子脑网络:透视 - 珍珠PDF文件第4页

量子脑网络:透视 - 珍珠PDF文件第5页