早就知道,量子计算具有彻底改变我们在古典计算机上难以解决的问题解决方案的潜力。直到最近,小型但功能上的量子计算机才能在云上使用,才能测试其潜力。在本文中,我们建议利用其能力来解决推荐系统提供商的重要任务,即推荐旋转木马的最佳选择。在许多视频和音乐流服务中,用户提供了一个包含多个推荐列表的首页,即旋转木马,每个旋转木马都具有一定的标准(例如艺术家,情绪,动作电影等)。选择要显示哪种旋转木马是一个困难的问题,因为它需要说明如何避免使用重复建议的不同建议列表,以及它们如何帮助用户探索目录。我们特别关注绝热的计算范式,并使用能够解决NP-HARD优化问题的D-Wave Quantum nealer可以通过经典操作研究工具来编程,并且可以在云上免费获得。我们提出了黑匣子推荐人的旋转木马选择问题的公式,可以在量子退火器上有效解决,并具有简单的优势。我们讨论了其有效性,局限性和可能的发展方向。