Loading...
机构名称:
¥ 1.0

随着通用纠错量子计算机的发展,我们有许多机会来测试当前和近期量子硬件的解决问题的能力 [1]。除了化学、人工智能和采样问题之外,组合优化问题也是量子加速解决方案的绝佳候选 [2]。与此同时,关于如何构建下一代能源网的新范式正在出现,这种能源网安全、有弹性、经济高效,可以容纳大量分布式可再生能源。这样的系统可能涉及密集的在线计算、多个时间尺度上的最优控制和广泛的状态监控,以动态适应不同的发电和需求 [3]。鉴于这项任务的复杂性,离线优化和合理设计电网属性以实现更高效的在线计算和观察对于未来电网的性能至关重要。在最简单的描述中,电网可以建模为一个无向图,其中系统中的总线被分配给图节点,分支被分配给图边。在这个抽象层次上,设计电力系统的第一步是解决图上定义的组合优化问题。许多与电网相关的组合优化问题都是 NP 完全的 [4] [5] [6]。因此,在无法获得精确解的情况下,确定和评估新型近似和启发式解决方法的性能对于电力系统设计中组合优化问题尤为重要。

关于 PMU 布局量子优化的计算可行性

关于 PMU 布局量子优化的计算可行性PDF文件第1页

关于 PMU 布局量子优化的计算可行性PDF文件第2页

关于 PMU 布局量子优化的计算可行性PDF文件第3页

关于 PMU 布局量子优化的计算可行性PDF文件第4页

关于 PMU 布局量子优化的计算可行性PDF文件第5页

相关文件推荐

2020 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2020 年
¥2.0
2020 年
¥5.0
2021 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥5.0
2023 年
¥1.0
2021 年
¥1.0
2020 年
¥3.0
2022 年
¥2.0
2022 年
¥3.0
2021 年
¥9.0
2023 年
¥1.0
2022 年
¥8.0
2023 年
¥3.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥3.0
2023 年
¥2.0
2023 年
¥1.0