引言智能系统通过拥有良好的老式人工智能(即Gofai或“象征性”)推理和连接主义统计学学习(例如Hitzler等。2022);但是,如何整合两者尚无共识。较少的方法之一是将生成的AI模型和认知体系结构整合到单个混合系统中。对人类认知结构进行建模的主要候选者是认知的常见模型,以前是心灵的标准模型(Laird,Lebiere和Rosen-Bloom 2017),但是目前它缺乏使低级连接因素在认知水平上可以解释的方法。认知的通用模型(CMC)概述了人类认知如何在计算机上运作的说明,并通过大规模的神经科学数据进行了验证(Stocco等人。2021)。相比之下,大多数生成神经网络不受与生物学的对应关系的约束,而是采用务实的方法来产生不知知的输出。认知建模和人工智能具有不明显的目标,即一方面解释和预测人类和动物的行为,并解决问题并执行任务而没有人类指导。然而,认知模型可以从当前深度学习方法的整体中受益,因为生成网络解决的许多任务都是认知建模缺乏详细过程模型的任务,例如受到启示,想象力和自然语言处理。为
主要关键词