Loading...
机构名称:
¥ 2.0

回忆设备已显示出巨大的希望,可以促进加速度并提高深度学习(DL)系统的功能效率。使用这些电阻随机访问mem-Ory(RRAM)设备构建的跨栏架构可用于实施各种内存计算操作,例如多重积累(MAC)和独立的卷积,这些卷积被广泛用于深度神经网络(DNNS)和卷积神经网络(Cnnns)和卷积神经网络(CNNS)(CNNS)(CNNS)。然而,回忆设备面临着衰老和非理想性的关注,这些设备限制了备忘录深度学习系统(MDLSS)的准确性,可靠性和鲁棒性,应在电路级别实现之前考虑。此原始软件出版物(OSP)介绍了Memtorch,这是一个开源1框架,用于大规模的大规模回忆DL模拟,并重新确定了对设备非思想的共同模拟的重点。MEMTORCH还促进了钥匙横梁外围电路的共同销售。Memtorch采用了现代化的软件工程方法,并直接与知名的Pytorch机器学习(ML)库集成。

memtorch- researchOnline@jcu

memtorch- researchOnline@jcuPDF文件第1页

memtorch- researchOnline@jcuPDF文件第2页

memtorch- researchOnline@jcuPDF文件第3页

memtorch- researchOnline@jcuPDF文件第4页

memtorch- researchOnline@jcuPDF文件第5页

相关文件推荐