本文探讨了代数几何的基本工具格罗布纳基的量子计算可行性。计算格罗布纳基的经典方法基于 Buchberger 算法,我们的问题是如何在其中采用量子算法。寻找最大值的量子算法可用于检测多项式的首项,这是计算 S 多项式所必需的。关于格罗布纳基的 S 多项式的约化可以通过表示多项式的矩阵的 Gauss-Jordan 消元法的量子版本来完成。然而,多项式零约化的频繁发生阻碍了量子算法的有效应用。这是因为多项式的零约化发生在非满秩矩阵中,而量子线性系统算法(通过矩阵求逆)对此是不够的,因为众所周知的量子线性求解器(如 Harrow-Hassidim-Lloyd)需要秘密计算特征值的逆。此类算法应在保证矩阵可以求逆的有限情况下使用。例如,从非约化 Gr¨obner 基到约化 Gr¨obner 基的转换就是这种类型的,量子算法肯定可以实现计算的部分加速。关键词——量子计算;量子算法;量子力学;符号计算;Gr¨obner 基;Buchberger 算法;F4 算法,F5 算法,F5C 算法
主要关键词