伽罗瓦群置换多项式的根,多项式通过 M 8 − H 对偶确定时空区域。根对应于质量平方值,一般为代数数,因此对应于 M 4 c ⊂ M 8 c 中的质量双曲面。H 图像对应于光锥固有时间常数值 a = an 的 3 双曲面。因此,伽罗瓦群可以置换具有类时分离的点。但请注意,a 的两个值的实部或有理部可以相同。这乍一看很奇怪,但实际上证实了这样一个事实:定义 TQC 的类时辫对应于定义弦世界面的弦状对象的 TGD 类时辫(也涉及重新连接),它们现在不是作为物理状态的类空实体的时间演化,而是对应于定义完全固定全息术所需边界数据的类时实体。它们的存在是由于所涉及的作用原理的决定论的微小失败而必然出现的,并且完全类似于肥皂片的非决定论,肥皂片的框架充当了决定论失败的座位。
主要关键词