Loading...
机构名称:
¥ 3.0

进行逻辑推理的能力是人类智能行为的一个基本方面,因此也是实现人类水平的人工智能的一个重要问题。传统上,知识表示和推理领域的基于逻辑的符号方法已用于为代理配备类似于人类逻辑推理能力的能力。然而,最近,人们越来越有兴趣使用机器学习而不是基于逻辑的符号形式来解决这些任务。在本文中,我们采用最先进的方法来训练深度神经网络,以设计一种新模型,该模型能够学习如何以基本本体推理的形式有效地执行逻辑推理。这是一项重要且非常自然的逻辑推理任务,这就是为什么所提出的方法适用于大量重要的现实问题。我们展示了几个实验的结果,这些结果表明我们的模型能够在非常大、多样化且具有挑战性的基准上学习执行高精度的本体推理。此外,事实证明,所建议的方法较少受到基于逻辑的符号推理的各种障碍的影响,同时从生物学的角度来看,它是令人惊讶的合理。

利用深度神经网络进行本体推理

利用深度神经网络进行本体推理PDF文件第1页

利用深度神经网络进行本体推理PDF文件第2页

利用深度神经网络进行本体推理PDF文件第3页

利用深度神经网络进行本体推理PDF文件第4页

利用深度神经网络进行本体推理PDF文件第5页

相关文件推荐