摘要:统计机器学习(SML)是指允许计算机发现输入数据集的重要特征的算法和方法,这些功能通常很大。从数据发现的特征发现的任务本质上是SML中关键字“学习”的含义。SML算法有效性的理论合理是由不同学科的声音原理(例如计算机科学和统计数据)所基于的。尤其是统计推断方法所理由的理论基础被称为统计学习理论。本文从贝叶斯决策理论的角度对SML进行了评论 - 我们认为,通过使用所谓的贝叶斯范式,许多SML技术与推理密切相关。我们讨论了许多重要的SML技术,例如受监督和无监督的学习,深度学习,在线学习和高斯流程,尤其是在经常使用的非常大的数据集的情况下。我们提出了一个词典,该字典映射了来自计算机科学和统计数据的SML的关键概念。我们用三个中等大型数据集说明了SML技术,我们还讨论了许多实际的实施问题。因此,该评论尤其针对统计学家和计算机科学家,他们渴望理解并将SML应用于中等大数据集。
主要关键词