摘要。在现实世界中,大多数组合优化问题都是多目标的,很难同时优化它们。在文献中,某些单独的算法(ACO,GA等)可用于解决此类离散的多目标优化问题(MOOPS),尤其是旅行推销员问题(TSP)。在这里开发了一种混合算法,将ACO和GA与多样性相结合以求解离散的多目标TSP并命名为Moacogad。通常在TSP中,由于路线长度保持不变,因此不认为行进路线。在现实生活中,可能有几条从一个目的地到另一个目的地的路线,这些路线的条件也可能不同,例如好,粗糙,坏等。在实际,旅行成本和旅行时间并未准确定义,并由模糊数据代表。当涉及模糊的旅行成本和模糊的旅行时间时,路线的长度和条件以及旅行的运输道类型变得很重要。在某些情况下,旅行风险也涉及。在本文中,由开发的Moacogad制定和解决了四维不精确的TSP,包括来源,目的地,输送和途径。该模型是数值说明的。由于特定情况三维和二维多目标不精确的TSP被得出和解决。
主要关键词