由于虚拟数据泛滥,物联网(IoT)处于最近不稳定的状态。相信,物联网和云计算达到了最大阈值,并在此之后加载数据只会使其性能恶化。因此,已经引入了边缘计算来减轻物联网的处理负担。为了满足边缘计算的安全要求,我们打算将区块链的方法与边缘计算一起使用,以获得更好的解决方案。因此,本文提出了基于人工神经网络和信任估计的新型区块链模型的引入,称为行为监测信任估计模型。性能指标,例如准确性,精度,召回和F-量表是在正常条件下和注射诸如虚假数据注入,引导攻击和捕获节点之类的攻击下计算的。将提出的行为监控信任分类模型与天真贝叶斯,K-Nearest邻居,自动编码器,随机森林和支持向量机等现有分类器进行了比较,并发现性能提高。还计算出拟议模型的其他评估参数,例如执行时间,加密时间,存储成本,计算费用,能源效率和数据包下降的可能性,并与现有的比特币,以太坊,HyperLeDger,直接和不变的信任模型以及相互信任的基于基于基于基于的区块链链链模型相比。所提出的模型的准确度为95%,精度得分为90%,召回分数为94%,F量表的F量为94%,表明表现出色。
主要关键词