摘要:机器学习(ML)技术正在越来越多地应用于金融市场,以分析趋势和预测股票价格。在这项研究中,我们比较了嵌入股票交易策略的各种ML算法的价格预测和利润绩效。数据集包含来自中国股票市场CSI 300指数的每日数据,大约17年(2006- 2023年)。我们将投资者情感指标和相关财务因素作为特征纳入。我们训练有素的模型包括支持向量机(SVM),逻辑回归和随机森林。结果表明,SVM模型的表现优于其他模型,在回测的60.52%的超额回报中获得了令人印象深刻的超额回报。此外,我们的研究将标准预测模型(例如Lasso和LSTM)与建议的方法进行了比较,为选择ML算法的用户提供了有价值的见解。最终,这项工作是未来财务应用中知情算法选择的基础。