摘要:预测性警务,人工智能(AI)在执法部门中的新兴应用(AI)使用算法来分析大量数据集并预测犯罪活动。这种方法旨在增强资源分配,改善响应时间并最终阻止犯罪。然而,尽管预测性警务有望改变预防犯罪,但它也引起了人们对其有效性,潜在偏见和道德意义的重大关注。本研究研究了预测性警务算法的功能,重点是其数据驱动方法及其对历史犯罪数据的依赖。研究表明有关有效性的结果不同;尽管一些司法管辖区报告降低了犯罪率,但其他司法管辖区则强调了某些社区的准确性和过度警务问题。此外,这些算法通常反映出社会偏见,对边缘化群体的歧视永久性,并导致不成比例的监视。在执法中部署AI的道德意义值得关注,因为它们与公民自由,问责制和公众信任相交。本文提倡一种平衡的方法,该方法将透明度,社区参与度和监管监督纳入了预测性警务技术的部署。最终,必须谨慎地与AI的整合在执法中,以确保它是正义的工具,而不是偏见或不平等工具。关键词:预测性警务,人工智能,预防犯罪,算法偏见,道德含义,执法1.通过探索预测性警务算法对多方面的影响,本研究为预防犯罪的未来和在社会中负责使用AI的持续论述做出了贡献。简介1.1背景
主要关键词