点击购买,资源将自动在新窗口打开.
获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
深度学习的成功取决于找到架构以符合任务。随着深度学习的扩展,构建结构变得很难手工设计。本文提出了一种自动化方法,即CodeEpneat,以通过进化来优化深度学习体系结构。通过将现有的神经进化方法扩展到拓扑,组件和超参数,此方法可实现与对象识别和语言建模中标准基准测试中最佳人工设计相当的结果。它还支持在杂志网站上构建自动图像字幕的现实应用程序。鉴于可用的计算能力的预期增加,深网的演变是将来构建深度学习应用程序的一种有前途的方法。
主要关键词