Loading...
机构名称:
¥ 1.0

抽象理解宇宙中暗物质的本质是现代宇宙学的重要目标。探测此分布的关键方法是通过弱重力透镜质量映射 - 这是一个具有挑战性的逆问题,其中一个人从观察到的剪切测量值中吸收收敛场。即将进行的IV阶段调查,例如Vera C. Rubin天文台和欧几里得卫星进行的将提供更大的数据和精确度,以进行镜头分析,因此需要在计算上具有高效的质量映射方法,并且还为集成到下斯流的综合分析提供了不认真的效率。 在这项工作中,我们介绍了MMGAN,这是一种基于正则条件生成对抗网络(GAN)框架的新型质量映射方法,该框架生成了给定剪切数据的收敛场的近似后验样品。 我们采用Wasserstein Gans来提高训练稳定性并应用正则化技术来克服模式崩溃,否则对于有条件的gan而言,否则尤其是严重的问题。 我们将模型应用于模拟宇宙风格的数据集,然后将其应用于真正的宇宙调查数据。 我们的方法极大地超过了Kaiser-Squires技术,并实现了与替代性深度学习方法相似的重建保真度。 值得注意的是,虽然从学习的后验产生样品的替代方法很慢(例如, 每个后部样品需要约10分钟分钟),MMGAN可以在不到一秒钟的时间内产生高质量的收敛样品。将提供更大的数据和精确度,以进行镜头分析,因此需要在计算上具有高效的质量映射方法,并且还为集成到下斯流的综合分析提供了不认真的效率。在这项工作中,我们介绍了MMGAN,这是一种基于正则条件生成对抗网络(GAN)框架的新型质量映射方法,该框架生成了给定剪切数据的收敛场的近似后验样品。我们采用Wasserstein Gans来提高训练稳定性并应用正则化技术来克服模式崩溃,否则对于有条件的gan而言,否则尤其是严重的问题。我们将模型应用于模拟宇宙风格的数据集,然后将其应用于真正的宇宙调查数据。我们的方法极大地超过了Kaiser-Squires技术,并实现了与替代性深度学习方法相似的重建保真度。值得注意的是,虽然从学习的后验产生样品的替代方法很慢(例如,每个后部样品需要约10分钟分钟),MMGAN可以在不到一秒钟的时间内产生高质量的收敛样品。

使用快速不确定性定量质量映射的生成建模

使用快速不确定性定量质量映射的生成建模PDF文件第1页

使用快速不确定性定量质量映射的生成建模PDF文件第2页

使用快速不确定性定量质量映射的生成建模PDF文件第3页

使用快速不确定性定量质量映射的生成建模PDF文件第4页

使用快速不确定性定量质量映射的生成建模PDF文件第5页