摘要 - 对意外情况的自动实时识别在自动驾驶汽车的安全中起着至关重要的作用,尤其是在不支持且无法预测的情况下。本文评估了来自深度学习域的不同贝叶斯不确定性量化方法,以预测基于系统级模拟的测试期间对安全至关重要的不当行为进行预测。具体来说,我们计算不确定性得分作为车辆执行,此后直觉是高不确定性得分表明无支撑的运行时条件,这些条件可用于区分安全性诱导故障驾驶行为。在我们的研究中,我们对两种贝叶斯不确定性定量方法相关的有效性和计算开销进行了评估,即Mc-辍学和深层集合,以避免行为不当。对全部 对于来自udacity模拟器的三个基准,包括通过突变测试介绍的分布和不安全条件,两种方法都成功地检测到了大量的越野发作,可提前几秒钟提供几秒钟的早期警告,并提前几秒钟,超出了两个省级的错误态度错误的预测方法,并在效率上效率效率和注意力效应,并效率为效率效率,并效率为效率,并提前效率上的效率效应。 值得注意的是,深层合奏在没有任何错误警报的情况下检测到了大多数不当行为,即使使用相对较少的模型,也可以在计算上可行地进行实时检测。 我们的发现表明,将不确定性量化方法纳入是一种可行的方法,用于在基于深度神经网络的自动驾驶汽车中构建故障安全机制。对于来自udacity模拟器的三个基准,包括通过突变测试介绍的分布和不安全条件,两种方法都成功地检测到了大量的越野发作,可提前几秒钟提供几秒钟的早期警告,并提前几秒钟,超出了两个省级的错误态度错误的预测方法,并在效率上效率效率和注意力效应,并效率为效率效率,并效率为效率,并提前效率上的效率效应。 值得注意的是,深层合奏在没有任何错误警报的情况下检测到了大多数不当行为,即使使用相对较少的模型,也可以在计算上可行地进行实时检测。 我们的发现表明,将不确定性量化方法纳入是一种可行的方法,用于在基于深度神经网络的自动驾驶汽车中构建故障安全机制。对于来自udacity模拟器的三个基准,包括通过突变测试介绍的分布和不安全条件,两种方法都成功地检测到了大量的越野发作,可提前几秒钟提供几秒钟的早期警告,并提前几秒钟,超出了两个省级的错误态度错误的预测方法,并在效率上效率效率和注意力效应,并效率为效率效率,并效率为效率,并提前效率上的效率效应。 值得注意的是,深层合奏在没有任何错误警报的情况下检测到了大多数不当行为,即使使用相对较少的模型,也可以在计算上可行地进行实时检测。 我们的发现表明,将不确定性量化方法纳入是一种可行的方法,用于在基于深度神经网络的自动驾驶汽车中构建故障安全机制。对于来自udacity模拟器的三个基准,包括通过突变测试介绍的分布和不安全条件,两种方法都成功地检测到了大量的越野发作,可提前几秒钟提供几秒钟的早期警告,并提前几秒钟,超出了两个省级的错误态度错误的预测方法,并在效率上效率效率和注意力效应,并效率为效率效率,并效率为效率,并提前效率上的效率效应。值得注意的是,深层合奏在没有任何错误警报的情况下检测到了大多数不当行为,即使使用相对较少的模型,也可以在计算上可行地进行实时检测。我们的发现表明,将不确定性量化方法纳入是一种可行的方法,用于在基于深度神经网络的自动驾驶汽车中构建故障安全机制。
主要关键词