抽象目标:包括孟加拉国和印度在内的许多南亚国家的农业部门在经济中起着关键作用,其中很大一部分人口依赖于生计。然而,农民经常遇到诸如不可预测的天气状况,土壤可变性以及诸如洪水和侵蚀的自然灾害之类的挑战,导致农作物的损失和经济损失。尽管政府补贴,许多农民仍在努力维持生计,导致对农业的利益下降。我们的重点是预测基于土壤和天气特征的组合,包括大米,黄麻,玉米等各种作物的分类。土壤特征,包括氮,磷,钾和pH水平,以及天气变量(例如温度,湿度和降雨),用于预测模型的输入。方法:在本研究中,我们通过利用先进的机器学习技术并将遗传算法整合到预测模型中来解决农作物预测的关键问题。我们提出的方法采用了混合方法,其中利用遗传算法来优化模型的超参数,从而增强其性能和鲁棒性。具体来说,我们采用了随机的森林分类器,一种强大的合奏学习技术,对与22种不同类型的农作物相关的类标签进行分类。发现:对模型的精度进行了广泛的评估,证明了99.3%的明显准确率。这种整合的目的是提高农作物预测模型的可解释性和准确性。此外,我们还利用了局部可解释的模型 - 不合Snostic解释(Lime)和Shapley添加说明(SHAP)可解释的AI(XAI)方法来解释和验证模型的预测。新颖性:该研究提出了一种独特的作物预测方法,该方法将机器学习(ML)与遗传算法(GAS)结合在一起。由于局部近似酸橙的性质,可能会产生矛盾的答案。另一方面,对于复杂的模型和广泛的数据集,塑造的计算成本可能很高。通过改进特征选择和模型参数,将气体与ML模型的集成克服了这些缺点,并产生了更可靠和准确的预测。我们系统所实现的高精度强调了其减轻农作物损失和提高农业生产力的潜力,从而为任何国家的农业部门的可持续性和繁荣做出了贡献。
主要关键词