Loading...
机构名称:
¥ 1.0

引言和一般性的个性化治疗响应预测提供了一些好处,它可能会减少治疗选择的试验和错误,减轻不良影响并优化治疗结果。该过程涉及从电子健康记录(EHR)中过滤相关特征,例如人口统计信息,病史,实验室结果和先前的治疗反应。使用机器学习方法创建预测模型,即监督学习算法,例如决策树,支持向量机和神经网络。通过使用过去的患者数据,这些模型可以预测新患者对各种疗法的反应。特征选择和提取算法用于识别相关变量,采用机器学习算法进行预测性建模。同样,NLP技术用于从非结构化临床文本中提取信息,以及数据预处理方法,以处理缺失的值,噪声和离群值。这些是电子健康记录中使用的各种工具和技术。

模式识别在电子卫生中录制。 ...

模式识别在电子卫生中录制。 ...PDF文件第1页

模式识别在电子卫生中录制。 ...PDF文件第2页