1。奖励在测试时间扩散模型中的奖励引入了迭代改进,适用于蛋白质和DNA设计Masatoshi uehara,Xingyu SU,Yulai Zhao,Yulai Zhao,Xiner LI,Aviv Regev,Shuiwang Ji,Sergey Ji,Sergey Levine,Sergey Levine,Tommaso Biancalani Arxiv Arxiv Preprint 2。与奖励指导一代的扩散模型中的推理时间对齐:教程和评论Masatoshi uehara,Yulai Zhao,Chenyu Wang,Xiner LI,Aviv Regev,Sergey Legev,Sergey Legev,Tommaso Biancalani Arxiv Arxiv Arxiv Preprint 3。Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding Xiner Li, Yulai Zhao , Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Biancalani, Shuiwang Ji, Aviv Regev, Sergey Levine, Masatoshi Uehara arXiv preprint 4.理解基于扩散模型的基于增强学习的微调:教程和评论Masatoshi uehara *,Yulai Zhao *,Tommaso Biancalani,Sergey Levine Arxiv Preprint 5。连续时间扩散模型的微调作为熵调查的对照果片uehara *,Yulai Zhao *,Kevin Black,Kevin Black,Ehsan Hajiramezanali,Gabriele Scalia,Nathaniel Lee Diemant,Alex M Tseng,Alex M Tseng,Tommaso Biancalani,Sergey/Sergey Levine在弱凸度假设下优化表现风险Yulai Zhao Neurips 2022关于机器学习优化的研讨会
主要关键词