Loading...
机构名称:
¥ 2.0

l t p c 3 0 0 3课程目标:1。审查和加强AI和ML所需的重要数学概念。2。从数据中介绍学习模式的概念,并为理解艺术机器学习算法的状态建立了强大的理论基础。课程成果:完成后,学生将能够:1。设计和实施机器学习解决方案,以解决分类,回归和聚类问题。2。评估和解释不同ML技术的结果。3。在一系列真实的应用程序中设计和实施各种机器学习算法。单元 - 我定义人工智能,使用谓词逻辑定义AI技术,并表示知识作为规则,代表逻辑,可计算功能和谓词中的简单事实,程序与声明性知识,逻辑编程单元-II数学基础:矩阵理论和机器学习的统计学。机器从数据中学习,问题的分类 - 回归和分类,监督和无监督的学习。单元-III线性回归:单个变量的模型表示,单个变量成本函数,线性回归的梯度体面,实践中的梯度不错。单元-IV逻辑回归:分类,假设表示,决策边界,成本函数,高级优化,多分类(一个与全部),过度拟合的问题。单元 - v讨论集群算法和用例围绕聚类和分类的讨论。教科书:1。2。Saroj Kaushik,人工智能,Cengage Learning,第一版2011年。Yuxi(Hayden)Liu,“以身作则的Python机器学习”,Packet Publishinglimited,2017年。参考书:1。Anindita Das Bhattacharjee,“实用的工作簿人工智能和针对初学者的软计算,Shroff Publisher-X Team Publisher2。汤姆·米切尔(Tom Mitchell),机器学习,麦格劳·希尔(McGraw Hill),2017年。3。Christopher M. Bishop,《模式识别与机器学习》,Springer,2011年。4。T. Hastie,R。Tibshirani,J。Friedman。统计学习的要素,2e,2011年。相应的在线资源:1。人工智能,https://swayam.gov.in/nd2_cec20_cs10/preview。

b.tech(Minor(AI&ML))

b.tech(Minor(AI&ML))PDF文件第1页

b.tech(Minor(AI&ML))PDF文件第2页

b.tech(Minor(AI&ML))PDF文件第3页

b.tech(Minor(AI&ML))PDF文件第4页

b.tech(Minor(AI&ML))PDF文件第5页

相关文件推荐

2021 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0